Continuous Distribution Measures (Moments & Cumulants)¶
This module provides functions to compute moments and cumulants from continuous probability distribution functions.
- moment_generating_function(generating_function, symbols, symbols_in_result, velocity=None)¶
Computes the moment generating function of a probability distribution. It is defined as:
\[F[f(\mathbf{x})](t) = \int e^{<\mathbf{x}, t>} f(\mathbf{x})\; dx\]- Parameters:
generating_function – sympy expression
symbols – a sequence of symbols forming the vector \(\mathbf{x}\)
symbols_in_result – a sequence forming the vector t
velocity – if the generating function generates central moments, the velocity needs to be substracted. Thus the velocity symbols need to be passed. All generating functions need to have the same parameters.
- Returns:
an expression that depends now on symbols_in_result (symbols have been integrated out)
- Return type:
transformation result F
Note
This function uses sympys symbolic integration mechanism, which may not work or take a large amount of time for some functions. Therefore this routine does some transformations/simplifications on the function first, which are taylored to expressions of the form exp(polynomial) i.e. Maxwellian distributions, so that these kinds of functions can be integrated quickly.
- central_moment_generating_function(func, symbols, symbols_in_result, velocity=(u_0, u_1, u_2))¶
Computes central moment generating func, which is defined as:
\[K( \mathbf{\Xi} ) = \exp ( - \mathbf{\Xi} \cdot \mathbf{u} ) M( \mathbf{\Xi} ).\]For parameter description see
moment_generating_function()
.
- cumulant_generating_function(func, symbols, symbols_in_result, velocity=None)¶
Computes cumulant generating func, which is the logarithm of the moment generating func:
\[C(\mathbf{\Xi}) = \log M(\mathbf{\Xi})\]For parameter description see
moment_generating_function()
.
- continuous_moment(func, moment, symbols=None)¶
Computes moment of given function.
- Parameters:
func – function to compute moments of
moment – tuple or polynomial describing the moment
symbols – if moment is given as polynomial, pass the moment symbols, i.e. the dof of the polynomial
- continuous_central_moment(func, moment, symbols=None, velocity=(u_0, u_1, u_2))¶
Computes central moment of given function.
- Parameters:
func – function to compute moments of
moment – tuple or polynomial describing the moment
symbols – if moment is given as polynomial, pass the moment symbols, i.e. the dof of the polynomial
- continuous_cumulant(func, moment, symbols=None)¶
Computes cumulant of continuous function.
for parameter description see
continuous_moment()