Bibliography

[AKO03]

S Ansumali, I. V Karlin, and H. C Öttinger. Minimal entropic kinetic models for hydrodynamics. IOP Publishing, 63(6):798–804, sep 2003. doi:10.1209/epl/i2003-00496-6.

[BFL01]

M’hamed Bouzidi, Mouaouia Firdaouss, and Pierre Lallemand. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of Fluids, 11 2001. URL: https://doi.org/10.1063/1.1399290, doi:10.1063/1.1399290.

[BG00]

JM Buick and CA Greated. Gravity in a lattice boltzmann model. Physical Review E, 61(5):5307, 2000. doi:10.1103/PhysRevE.61.5307.

[BoschCK15]

Fabian Bösch, Shyam S Chikatamarla, and Ilya V Karlin. Entropic multirelaxation lattice boltzmann models for turbulent flows. Physical Review E, 92(4):043309, 2015. doi:10.1103/PhysRevE.92.043309.

[CCL19]

Christophe Coreixas, Bastien Chopard, and Jonas Latt. Comprehensive comparison of collision models in the lattice boltzmann framework: theoretical investigations. Phys. Rev. E, 100:033305, Sep 2019. URL: https://link.aps.org/doi/10.1103/PhysRevE.100.033305, doi:10.1103/PhysRevE.100.033305.

[DHumieres92]

D. D'Humières. Generalized lattice-Boltzmann equations. Rarefied gas dynamics, 1992.

[FLBC18]

A. Fakhari, Y. Li, D. Bolster, and K. T. Christensen. A phase-field lattice Boltzmann model for simulating multiphase flows in porous media: application and comparison to experiments of CO2 sequestration at pore scale. Advances in Water Resources, 114:119–134, 2018. doi:10.1016/j.advwatres.2018.02.005.

[FBL17]

Abbas Fakhari, Diogo Bolster, and Li-Shi Luo. A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades. Journal of Computational Physics, 2017. doi:10.1016/j.jcp.2017.03.062.

[Gei06]

Martin Geier. Ab inito derivation of the cascaded lattice Boltzmann automaton. PhD thesis, Department of Microsystems Technology IMTEK, University of Freiburg, 2006.

[GPSchonherr17]

Martin Geier, Andrea Pasquali, and Martin Schönherr. Parametrization of the cumulant lattice boltzmann method for fourth order accurate diffusion part i. J. Comput. Phys., 348(C):862–888, nov 2017. URL: https://doi.org/10.1016/j.jcp.2017.05.040, doi:10.1016/j.jcp.2017.05.040.

[GSchonherrPK15]

Martin Geier, Martin Schönherr, Andrea Pasquali, and Manfred Krafczyk. The cumulant lattice Boltzmann equation in three dimensions: Theory and validation. Computers & Mathematics with Applications, 70(4):507–547, 2015. doi:10.1016/j.camwa.2015.05.001.

[GruszczynskiML+20]

G. Gruszczyński, T. Mitchell, C. Leonardi, Ł. Łaniewski-Wołłk, and T. Barber. A cascaded phase-field lattice boltzmann model for the simulation of incompressible, immiscible fluids with high density contrast. Computers & Mathematics with Applications, 79(4):1049–1071, feb 2020. doi:10.1016/j.camwa.2019.08.018.

[GZS02]

Zhaoli Guo, Chuguang Zheng, and Baochang Shi. Discrete lattice effects on the forcing term in the lattice boltzmann method. Physical Review E, 65(4):046308, 2002. doi:10.1103/PhysRevE.65.046308.

[HOK21]

Mengtao Han, Ryozo Ooka, and Hideki Kikumoto. A wall function approach in lattice boltzmann method: algorithm and validation using turbulent channel flow. Fluid Dynamics Research, 53(4):045506, aug 2021. URL: https://dx.doi.org/10.1088/1873-7005/ac1782, doi:10.1088/1873-7005/ac1782.

[HL97]

Xiaoyi He and Li-Shi Luo. Lattice boltzmann model for the incompressible navier–stokes equation. Journal of Statistical Physics, 88(3/4):927–944, aug 1997. doi:10.1023/b:joss.0000015179.12689.e4.

[HSD98]

Xiaoyi He, Xiaowen Shan, and Gary D. Doolen. Discrete boltzmann equation model for nonideal gases. Physical Review E, 57:R13–R16, 1 1998. doi:10.1103/PhysRevE.57.R13.

[IVDHumieres08]

Ginzburg Irina, Frederik Verhaeghe, and D. D'Humières. Two-relaxation-time lattice boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Communications in Computational Physics, 3:427–478, 01 2008.

[KrugerKK+17]

T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen. The Lattice Boltzmann Method. Springer International Publishing, 2017. doi:10.1007/978-3-319-44649-3.

[MKR20]

Björn Maronga, Christoph Knigge, and Siegfried Raasch. An Improved Surface Boundary Condition for Large-Eddy Simulations Based on Monin–Obukhov Similarity Theory: Evaluation and Consequences for Grid Convergence in Neutral and Stable Conditions. Boundary-layer meteorology, 174(2):297–325, 2020. doi:10.1007/s10546-019-00485-w.

[OC05]

R. Ouared and B. Chopard. Lattice Boltzmann simulations of blood flow: Non-Newtonian rheology and clotting processes. Journal of Statistical Physics, 2005. doi:10.1007/s10955-005-8415-x.

[PS20]

B. Postma and G. Silva. Force methods for the two-relaxation-times lattice Boltzmann. Phys. Rev. E, 12 2020. doi:10.1103/PhysRevE.102.063307.

[RBMV15]

Wybe Rozema, Hyun J. Bae, Parviz Moin, and Roel Verstappen. Minimum-dissipation models for large-eddy simulation. Physics of Fluids, aug 2015. doi:10.1063/1.4928700.

[Sch08]

Ulf Daniel Schiller. Thermal fluctuations and boundary conditions in the lattice Boltzmann method. PhD thesis, Johannes Gutenberg Universität Mainz, 2008.

[SKrugerK16]

Ciro Semprebon, Timm Krüger, and Halim Kusumaatmaja. Ternary free-energy lattice boltzmann model with tunable surface tensions and contact angles. Phys. Rev. E, 93:033305, Mar 2016. doi:10.1103/PhysRevE.93.033305.

[SS11]

G. Silva and V. Semiao. A study on the inclusion of body forces in the lattice boltzmann bgk equation to recover steady-state hydrodynamics. Physica A: Statistical Mechanics and its Applications, 390(6):1085–1095, 2011. doi:10.1016/j.physa.2010.11.037.

[WohrwagSMazloomiMoqaddam+18]

M. Wöhrwag, C. Semprebon, A. Mazloomi Moqaddam, I. Karlin, and H. Kusumaatmaja. Ternary Free-Energy Entropic Lattice Boltzmann Model with a High Density Ratio. Physical Review Letters, 2018. arXiv:1710.07486, doi:10.1103/PhysRevLett.120.234501.

[Luo93]

L.-S. Luo. Lattice-Gas Automata and Lattice Boltzmann Equations for Two-Dimensional Hydrodynamics. PhD thesis, GEORGIA INSTITUTE OF TECHNOLOGY., 1993.