Generator Scripts¶
Writing generator scripts is the primary usage idiom of pystencils-sfg.
A generator script is a Python script, say kernels.py
, which contains pystencils-sfg
code at the top level that, when executed, emits source code to a pair of files kernels.h
and kernels.cpp
. This guide describes how to write such a generator script, its structure, and how
it can be used to generate code.
Anatomy¶
The code generation process in a generator script is controlled by the SourceFileGenerator
context manager.
It configures the code generator by combining configuration options from the
environment (e.g. a CMake build system) with options specified in the script,
and infers the names of the output files from the script’s name.
It then returns a composer
to the user,
which provides a convenient interface for constructing the source files.
To start, place the following code in a Python script, e.g. kernels.py
:
from pystencilssfg import SourceFileGenerator
with SourceFileGenerator() as sfg:
pass
The source file is constructed within the context manager’s managed region.
During execution of the script, when the region ends, a header/source file pair
kernels.h
and kernels.cpp
will be written to disk next to your script.
Execute the script as-is and inspect the generated files, which will of course still be empty:
Generated Files
#pragma once
#include <cstdint>
#define RESTRICT __restrict__
#include "kernels.h"
#define FUNC_PREFIX inline
/*************************************************************************************
* Kernels
*************************************************************************************/
namespace kernels {
} // namespace kernels
/*************************************************************************************
* Functions
*************************************************************************************/
/*************************************************************************************
* Class Methods
*************************************************************************************/
Using the Composer¶
The object sfg
constructed in above snippet is an instance of SfgComposer.
The composer is the central part of the user front-end of pystencils-sfg.
It provides an interface for constructing source files that closely mimics
C++ syntactic structures within Python.
Here is an overview of its various functions:
Includes and Definitions¶
With SfgComposer.include
, the code generator can be instructed to include header files.
As in C++, you can use the <>
delimiters for system headers, and omit them for project headers.
from pystencilssfg import SourceFileGenerator
with SourceFileGenerator() as sfg:
sfg.include("<vector>")
sfg.include("<span>")
sfg.include("custom_header.hpp")
#pragma once
#include "custom_header.hpp"
#include <span>
#include <vector>
#include <cstdint>
#define RESTRICT __restrict__
#include "kernels.h"
#define FUNC_PREFIX inline
/*************************************************************************************
* Kernels
*************************************************************************************/
namespace kernels {
} // namespace kernels
/*************************************************************************************
* Functions
*************************************************************************************/
/*************************************************************************************
* Class Methods
*************************************************************************************/
Adding Kernels¶
pystencils-generated kernels are managed in kernel namespaces.
The default kernel namespace is called kernels
and is available via
sfg.kernels
.
Adding an existing pystencils AST, or creating one from a list of assignments, is possible through
kernels.add
and
kernels.create
.
The latter is a wrapper around
pystencils.create_kernel
.
Both functions return a kernel handle
through which the kernel can be accessed, e.g. for calling it in a function.
To access other kernel namespaces than the default one,
the sfg.kernel_namespace
method can be used.
from pystencilssfg import SourceFileGenerator
import pystencils as ps
import sympy as sp
with SourceFileGenerator() as sfg:
# Define a copy kernel
src, dst = ps.fields("src, dst: [1D]")
c = sp.Symbol("c")
@ps.kernel
def scale():
dst.center @= c * src.center()
# Add it to the file
scale_kernel = sfg.kernels.create(scale, "scale")
#pragma once
#include <cstdint>
#define RESTRICT __restrict__
#include "kernels.h"
#include <math.h>
#define FUNC_PREFIX inline
/*************************************************************************************
* Kernels
*************************************************************************************/
namespace kernels {
FUNC_PREFIX void scale (double * const _data_dst, double * const _data_src, const int64_t _size_dst_0, const int64_t _stride_dst_0, const int64_t _stride_src_0, const double c)
{
for(int64_t ctr_0 = 0LL; ctr_0 < _size_dst_0; ctr_0 += 1LL)
{
_data_dst[ctr_0 * _stride_dst_0] = c * _data_src[ctr_0 * _stride_src_0];
}
}
} // namespace kernels
/*************************************************************************************
* Functions
*************************************************************************************/
/*************************************************************************************
* Class Methods
*************************************************************************************/
Building Functions¶
Through the composer, you can define free functions in your generated C++ file.
These may contain arbitrary code;
their primary intended task however is to wrap kernel calls with the necessary boilerplate code
to integrate them into a framework.
The composer provides an interface for constructing functions that tries to mimic the look of the generated C++ code.
Use sfg.function
to create a function, and sfg.call
to call a kernel:
# ... see above ...
sfg.function("scale_kernel")(
sfg.call(scale_kernel)
)
#pragma once
#include <cstdint>
#define RESTRICT __restrict__
void scale_kernel ( double * const _data_dst, double * const _data_src, const int64_t _size_dst_0, const int64_t _stride_dst_0, const int64_t _stride_src_0, const double c );
#include "kernels.h"
#include <math.h>
#define FUNC_PREFIX inline
/*************************************************************************************
* Kernels
*************************************************************************************/
namespace kernels {
FUNC_PREFIX void scale (double * const _data_dst, double * const _data_src, const int64_t _size_dst_0, const int64_t _stride_dst_0, const int64_t _stride_src_0, const double c)
{
for(int64_t ctr_0 = 0LL; ctr_0 < _size_dst_0; ctr_0 += 1LL)
{
_data_dst[ctr_0 * _stride_dst_0] = c * _data_src[ctr_0 * _stride_src_0];
}
}
} // namespace kernels
/*************************************************************************************
* Functions
*************************************************************************************/
void scale_kernel (double * const _data_dst, double * const _data_src, const int64_t _size_dst_0, const int64_t _stride_dst_0, const int64_t _stride_src_0, const double c){
kernels::scale(_data_dst, _data_src, _size_dst_0, _stride_dst_0, _stride_src_0, c);}
/*************************************************************************************
* Class Methods
*************************************************************************************/
Note the special syntax: To mimic the look of a C++ function, the composer uses a sequence of two calls to construct the function.
The function body can furthermore be populated with code to embedd the generated kernel into
the target C++ application.
If you examine the generated files of the previous example, you will notice that your
function scale_kernel
has lots of raw pointers and integer indices in its interface.
We can wrap those up into proper C++ data structures,
such as, for example, std::span
or std::vector
, like this:
import pystencilssfg.lang.cpp.std as std
sfg.include("<span>")
sfg.function("scale_kernel")(
sfg.map_field(src, std.vector(src)),
sfg.map_field(dst, std.span(dst)),
sfg.call(scale_kernel)
)
#pragma once
#include <cstdint>
#include <vector>
#include <span>
#define RESTRICT __restrict__
void scale_kernel ( const double c, std::span< double > & dst, std::vector< double > & src );
#include "kernels.h"
#include <math.h>
#define FUNC_PREFIX inline
/*************************************************************************************
* Kernels
*************************************************************************************/
namespace kernels {
FUNC_PREFIX void scale (double * const _data_dst, double * const _data_src, const int64_t _size_dst_0, const int64_t _stride_dst_0, const int64_t _stride_src_0, const double c)
{
for(int64_t ctr_0 = 0LL; ctr_0 < _size_dst_0; ctr_0 += 1LL)
{
_data_dst[ctr_0 * _stride_dst_0] = c * _data_src[ctr_0 * _stride_src_0];
}
}
} // namespace kernels
/*************************************************************************************
* Functions
*************************************************************************************/
void scale_kernel (const double c, std::span< double > & dst, std::vector< double > & src){
double * const _data_src { src.data() };
const int64_t _stride_src_0 { 1 };
double * const _data_dst { dst.data() };
const int64_t _size_dst_0 { dst.size() };
const int64_t _stride_dst_0 { 1 };
kernels::scale(_data_dst, _data_src, _size_dst_0, _stride_dst_0, _stride_src_0, c);}
/*************************************************************************************
* Class Methods
*************************************************************************************/
If you now inspect the generated code, you will see that the interface of your function is considerably simplified. Also, all the necessary code was added to its body to extract the low-level information required by the actual kernel from the data structures.
The sfg.map_field
API can be used to map pystencils fields to a variety of different data structures.
The pystencils-sfg provides modelling support for a number of C++ standard library classes
(see pystencilssfg.lang.cpp.std
).
It also provides the necessary infrastructure for modelling the data structures of any C++ framework
in a similar manner.