{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Shan-Chen Two-Component Lattice Boltzmann" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from lbmpy.session import *\n", "from lbmpy.updatekernels import create_stream_pull_with_output_kernel\n", "from lbmpy.macroscopic_value_kernels import macroscopic_values_getter, macroscopic_values_setter\n", "from lbmpy.maxwellian_equilibrium import get_weights" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is based on section 9.3.3 of Krüger et al.'s \"The Lattice Boltzmann Method\", Springer 2017 (http://www.lbmbook.com).\n", "Sample code is available at [https://github.com/lbm-principles-practice/code/](https://github.com/lbm-principles-practice/code/blob/master/chapter9/shanchen.cpp)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Parameters" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "N = 64 # domain size\n", "omega_a = 1. # relaxation rate of first component\n", "omega_b = 1. # relaxation rate of second component\n", "\n", "# interaction strength\n", "g_aa = 0.\n", "g_ab = g_ba = 6.\n", "g_bb = 0.\n", "\n", "rho0 = 1.\n", "\n", "stencil = LBStencil(Stencil.D2Q9)\n", "weights = get_weights(stencil, c_s_sq=sp.Rational(1, 3))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data structures\n", "\n", "We allocate two sets of PDF's, one for each phase. Additionally, for each phase there is one field to store its density and velocity.\n", "\n", "To run the simulation on GPU, change the default_target to gpu" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "dim = stencil.D\n", "dh = ps.create_data_handling((N, ) * dim, periodicity=True, default_target=ps.Target.CPU)\n", "\n", "src_a = dh.add_array('src_a', values_per_cell=stencil.Q)\n", "dst_a = dh.add_array_like('dst_a', 'src_a')\n", "\n", "src_b = dh.add_array('src_b', values_per_cell=stencil.Q)\n", "dst_b = dh.add_array_like('dst_b', 'src_b')\n", "\n", "ρ_a = dh.add_array('rho_a')\n", "ρ_b = dh.add_array('rho_b')\n", "u_a = dh.add_array('u_a', values_per_cell=stencil.D)\n", "u_b = dh.add_array('u_b', values_per_cell=stencil.D)\n", "u_bary = dh.add_array_like('u_bary', u_a.name)\n", "\n", "f_a = dh.add_array('f_a', values_per_cell=stencil.D)\n", "f_b = dh.add_array_like('f_b', f_a.name)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Force & combined velocity\n", "\n", "The two LB methods are coupled using a force term. Its symbolic representation is created in the next cells.\n", "The force value is not written to a field, but directly evaluated inside the collision kernel." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The force between the two components is\n", "$\\mathbf{F}_k(\\mathbf{x})=-\\psi(\\rho_k(\\mathbf{x}))\\sum\\limits_{k^\\prime\\in\\{A,B\\}}g_{kk^\\prime}\\sum\\limits_{i=1}^{q}w_i\\psi(\\rho_{k^\\prime}(\\mathbf{x}+\\mathbf{c}_i))\\mathbf{c}_i$\n", "for $k\\in\\{A,B\\}$\n", "and with \n", "$\\psi(\\rho)=\\rho_0\\left[1-\\exp(-\\rho/\\rho_0)\\right]$." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "def psi(dens):\n", " return rho0 * (1. - sp.exp(-dens / rho0));" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "zero_vec = sp.Matrix([0] * dh.dim) \n", "\n", "force_a = zero_vec\n", "for factor, ρ in zip([g_aa, g_ab], [ρ_a, ρ_b]):\n", " force_a += sum((psi(ρ[d]) * w_d * sp.Matrix(d)\n", " for d, w_d in zip(stencil, weights)), \n", " zero_vec) * psi(ρ_a.center) * -1 * factor\n", "\n", "force_b = zero_vec\n", "for factor, ρ in zip([g_ba, g_bb], [ρ_a, ρ_b]):\n", " force_b += sum((psi(ρ[d]) * w_d * sp.Matrix(d)\n", " for d, w_d in zip(stencil, weights)), \n", " zero_vec) * psi(ρ_b.center) * -1 * factor\n", " \n", "f_expressions = ps.AssignmentCollection([\n", " ps.Assignment(f_a.center_vector, force_a),\n", " ps.Assignment(f_b.center_vector, force_b)\n", "])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The barycentric velocity, which is used in place of the individual components' velocities in the equilibrium distribution and Guo force term, is\n", "$\\vec{u}=\\frac{1}{\\rho_a+\\rho_b}\\left(\\rho_a\\vec{u}_a+\\frac{1}{2}\\vec{F}_a+\\rho_b\\vec{u}_b+\\frac{1}{2}\\vec{F}_b\\right)$." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "u_full = list(ps.Assignment(u_bary.center_vector,\n", " (ρ_a.center * u_a.center_vector + ρ_b.center * u_b.center_vector) / (ρ_a.center + ρ_b.center)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Kernels" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "lbm_config_a = LBMConfig(stencil=stencil, relaxation_rate=omega_a, compressible=True,\n", " velocity_input=u_bary, density_input=ρ_a, force_model=ForceModel.GUO, \n", " force=f_a, kernel_type='collide_only')\n", "\n", "lbm_config_b = LBMConfig(stencil=stencil, relaxation_rate=omega_b, compressible=True,\n", " velocity_input=u_bary, density_input=ρ_b, force_model=ForceModel.GUO, \n", " force=f_b, kernel_type='collide_only')\n", "\n", "\n", "\n", "collision_a = create_lb_update_rule(lbm_config=lbm_config_a,\n", " optimization={'symbolic_field': src_a})\n", "\n", "collision_b = create_lb_update_rule(lbm_config=lbm_config_b,\n", " optimization={'symbolic_field': src_b})" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "stream_a = create_stream_pull_with_output_kernel(collision_a.method, src_a, dst_a, \n", " {'density': ρ_a, 'velocity': u_a})\n", "stream_b = create_stream_pull_with_output_kernel(collision_b.method, src_b, dst_b, \n", " {'density': ρ_b, 'velocity': u_b})\n", "\n", "config = ps.CreateKernelConfig(target=dh.default_target)\n", "\n", "stream_a_kernel = ps.create_kernel(stream_a, config=config).compile()\n", "stream_b_kernel = ps.create_kernel(stream_b, config=config).compile()\n", "collision_a_kernel = ps.create_kernel(collision_a, config=config).compile()\n", "collision_b_kernel = ps.create_kernel(collision_b, config=config).compile()\n", "\n", "force_kernel = ps.create_kernel(f_expressions, config=config).compile()\n", "u_kernel = ps.create_kernel(u_full, config=config).compile()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initialization" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "init_a = macroscopic_values_setter(collision_a.method, velocity=(0, 0), \n", " pdfs=src_a.center_vector, density=ρ_a.center)\n", "init_b = macroscopic_values_setter(collision_b.method, velocity=(0, 0), \n", " pdfs=src_b.center_vector, density=ρ_b.center)\n", "init_a_kernel = ps.create_kernel(init_a, ghost_layers=0).compile()\n", "init_b_kernel = ps.create_kernel(init_b, ghost_layers=0).compile()\n", "\n", "\n", "dh.run_kernel(init_a_kernel)\n", "dh.run_kernel(init_b_kernel)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "def init():\n", " dh.fill(ρ_a.name, 0.1, slice_obj=ps.make_slice[:, :0.5])\n", " dh.fill(ρ_a.name, 0.9, slice_obj=ps.make_slice[:, 0.5:])\n", "\n", " dh.fill(ρ_b.name, 0.9, slice_obj=ps.make_slice[:, :0.5])\n", " dh.fill(ρ_b.name, 0.1, slice_obj=ps.make_slice[:, 0.5:])\n", " \n", " dh.fill(f_a.name, 0.0)\n", " dh.fill(f_b.name, 0.0)\n", "\n", " dh.run_kernel(init_a_kernel)\n", " dh.run_kernel(init_b_kernel)\n", " \n", " dh.fill(u_a.name, 0.0)\n", " dh.fill(u_b.name, 0.0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Timeloop" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "sync_pdfs = dh.synchronization_function([src_a.name, src_b.name])\n", "sync_ρs = dh.synchronization_function([ρ_a.name, ρ_b.name])\n", "\n", "def time_loop(steps):\n", " dh.all_to_gpu()\n", " for i in range(steps):\n", " sync_ρs() # force values depend on neighboring ρ's\n", " dh.run_kernel(force_kernel)\n", " dh.run_kernel(u_kernel)\n", " dh.run_kernel(collision_a_kernel)\n", " dh.run_kernel(collision_b_kernel)\n", " \n", " sync_pdfs()\n", " dh.run_kernel(stream_a_kernel)\n", " dh.run_kernel(stream_b_kernel)\n", " \n", " dh.swap(src_a.name, dst_a.name)\n", " dh.swap(src_b.name, dst_b.name)\n", " dh.all_to_cpu()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "def plot_ρs():\n", " plt.figure(dpi=200)\n", " plt.subplot(1,2,1)\n", " plt.title(\"$\\\\rho_A$\")\n", " plt.scalar_field(dh.gather_array(ρ_a.name), vmin=0, vmax=2)\n", " plt.colorbar()\n", " plt.subplot(1,2,2)\n", " plt.title(\"$\\\\rho_B$\")\n", " plt.scalar_field(dh.gather_array(ρ_b.name), vmin=0, vmax=2)\n", " plt.colorbar()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Run the simulation\n", "### Initial state" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACeQAAAQKCAYAAAArG+jpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAB7CAAAewgFu0HU+AACX2ElEQVR4nOzdfZhtZ1kf/u99MiSE12h4CSTRAFETFAFNKAgSFYWgUQIVUFSMEBFrqeIbtGCJoK0itmjAipUS5IcgIBBMQcQXIkTBxOILJqAi0XMICQFMCElIzOzn98esc85mmJk9M3vt2XvNfD7Xta79rL2e9ax7OLmutt/eez3VWgsAAAAAAAAAAAAwnX3zLgAAAAAAAAAAAAB2Aw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANADDXkAQJKkqu5UVc+rqj+vqk9U1S3dcWVVvbKqvnLeNQIAAAAAzIJ8FACAvlRrbd41AABzVlWPTfK/kxy/wbTPJfm+1tqbdqYqAAAAAIDZk48CANAnDXkAsMdV1XlJXjD21T8kuTTJLUm+OsnXjl27KcnXtNY+vGMFAgAAAADMiHwUAIC+acgDgD2sqv5rkp/tTg8k+cHW2u+vmnNWkjclOar76oLW2g/sXJUAAAAAAP2TjwIAMAsa8gBgj6qqb0ryh0kqyb8k+brW2sfWmfszSV7Ynd6Q5JjW2mhHCgUAAAAA6Jl8FACAWdGQBwB7UFUdkeTyJF+epGUlbHrfBvNPSLJ/7KtTbMsAAAAAAAyRfBQAgFnaN+8CAIC5eFJWwqYk+Z2NwqYkaa0dSPKZsa/uOqvCAAAAAABmTD4KAMDMaMgDgL3pB8bGL9/kPf82Np74it2qentVte54zJaqAwAAAACYnV7z0ao6dSwLXX3cVFVXVNX/qKp7TF05AAALb2neBQAAO6uq7pzkm7rTTya5ZBP3LOXzf/W5f7253fzHJnns2FcPSvLOLRUKAAAAANCzGeWjX9N93pTkA2PfH5XkS5Kc0h2Pr6oHtdau30bpAAAMhDfkAcDe83VJjujG722tTXzbXZKTc7iR/4Yk16w3sapul+R/dqfXdZ8P3HqZAAAAAAC9m0U+erAh749ba48YO05PclySH+mun5TkKduuHACAQdCQBwB7z78bG1+xyXu+fmz8pxNCqmcl+YokH0ny37rvHrTp6gAAAAAAZmcW+ejBhrwPrPo+bcWv5XAT30mbfCYAAANly1oA2HsePDb+xCbvefzYeN2tZ6vqbkn+a3f6U0kObr3w5VV1dGvt5k1XCQAAAADQv1nkow/qPr+gIW/MqPv8+CafCQDAQHlDHgDsPeOB0+0mTa6qk5M8pjv9XJLXbjD955PcNcnFrbW3JPnb7vsjknzV1ksFAAAAAOhVr/loVd0vyTHd6ZoNeVX1mCT3SnJLkjdvrVwAAIZGQx4A7CFV9cVJvnTsq/tv4rZfzuH/O8OrWmufXmftByY5Nyu/9Hx2krTWrs3hX5k+cDs1AwAAAAD0YUb56MHtaq9rrV059qyjqurLq+q/JnlTkluTnNta+5dtFQ8AwGBoyAOAveXBq84fX1VftN7kqnpuku/oTj+d5Gc2WPtXsvJ/t3h1a238l6AH35L3oK2VCgAAAADQq1nkowcb8o6pqnbwyMrb9D6c5Lwkb0zy71pr/980xQMAMAwa8gBgbxkPnG7Nyvayr6+qY8YnVdVdq+rlSf5799Vyku9rrX1qrUWr6juTnJHkxiTPW3X5g92nN+QBAAAAAPM0i3z04Jr/nOSSseP/ZaWJr5L8+yQP6+lvAABgwS3NuwAAYEeNB07PS/ILSR6d5J+r6o+SfDLJCVlprrtDN285yTNba29fa8Gqun2SX+pOf6G19vFVUw6+Ie+rq6paa236PwMAAAAAYMt6z0fH1nz+6jfgVdURSZ6dlfz016rq71prf9rLXwIAwMIq/3/iALB3VNXlSU7tTk/MynYL52f9t+YeSPKDrbXf32DN5yd5UZL9Sb6itXbzqusPSfL+7vR+rbV/2v5fAAAAAACwPX3no1V1QlZy0ST56tba364z74NJvjLJr7XWfmSb5QMAMBC2rAWAPaKq7pDky7vTT7fWDrTWfi3JI5O8MStbKtya5NokFyf5T1lpsNuoGe/4JM/tTk9MclNVtfEjh5vxkuRBff5NAAAAAACbMYt8NMnXdJ+3JLlig3kf7T7vuc3yAQAYEFvWAsDe8cAkR3Tjvz74ZWvtkiSXbHPNX0hyxySfTXL9BvPunuTIroY3b/NZAAAAAADbNYt89GBD3t+11m7bYN4J3efV23wOAAADoiEPAPaOB4+N/2raxarq3yX5niQtyWNaa3+2wdw3JHlivCEPAAAAAJiPXvPRzsGGvL9eb0KXoz6wO317T88FAGCB2bIWAPaO8cBp3YBoM6qqkvxqkkry2o2a8Tof7D4fuOEsAAAAAIDZ6C0fHXOwIe+vVl+oqn1V9dQkF2YlR31na01DHgDAHuANeQCwd/QZOD01yUOS3JjkOZuYf7Ah70ur6pjW2nVTPh8AAAAAYCt6bcirqrsnOb47/eGqetLY5S9Kcp8kR3fnb0nyfdM+EwCAYdCQBwB7QFUtJfmq7vTfklw+xVp3SvLfu9P/1lq7ahO3fXBs/KAk797u8wEAAAAAtqLPfHTM14yNT1l17bNJrkzyviS/1Vp7dw/PAwBgIDTkAcDecP8kR3XjD7XWbt3uQq21zya59xbv+fusbMsAAAAAALDTestHD2qtvTMyTwAA1rBv3gUAADui1+0YAAAAAAAGRD4KAMCOqdbavGsAAAAAWDhV9TVJzkzy9VnZ3uoeWdne6qokf5bkla219/T8zO9K8gNJvjrJFyW5Osl7kry8tfa+Ta5xbJL/lOTsJCdl5a0dH03y1iS/2lr7VJ81AwAAAAC7j3x0+zTkAQAAAKxSVRcneeQmpr4mybnTbnlVVbdP8sYkZ60zZZTkvNbaiyasc3qSC5Pca50pVyV5XGvtsu3WCgAAAADsbvLR6WjIAwAAAFilqv4xyf2yEtC8MSu/wvyXJEckeViSn0hyfDf9da21p0z5vNcmObjGnyT5le7ZD0jyX7pakuQHW2u/uc4axyf5yyT3THJbkv+R5KLu8llJfjzJUpJrknxta+1j09QMAAAAAOxO8tHpaMgDAAAAWKWqLkryW0l+t7W2vMb1uyW5JMmXd189crvbM1TVGUne3Z3+XpLHjz+ze9ZfJvmSJP+a5L6ttevWWOeCJN/fnT6ptfbGVdefmOQN3emrWmtP2069AAAAAMDuJh+djoY8AAAAgG2oqrOyEhAlya+21n50m+v83yTfmmQ5yUmttQNrzPmuJK/rTn+ytfbLq67fM8nHsvIL1Xe21s5c51m/n+Qx3bOOb61ds52aAQAAAIC9TT66vn2zWBQAAABgD3j32Ph+603aSFXdKcmjutN3rRU2dd6c5DPd+AlrXP+OrIRNSfKqDR55Qfd5RHcPAAAAAMB2vHtsLB8doyEPAAAAYHuOHBuPtrnGQ5Ic1Y0vXm9Sa+3WJO87eE9V3W7VlK8fG6+7zqprj9hskQAAAAAAq8hH16EhDwAAAGB7zhgbf2iba5y6hTUOXl9K8mXrrHN9a+3q9RZorX08h39Jeup68wAAAAAAJpCPrmNpVgvvJlV1VJIHdKfXZmUfYQAAAPaOI5LcvRv/bWvtlnkW07eqWkpy3Lzr2Kbjson/t/oGWx1sS1XtS/Lcsa/esM2lThwbT6px/6r7Ll9jnc38nfuTfOWqZwOsSz4KAACw5+3qfDSRkW6VfHRjGvI25wFJLp13EQAAACyE05NcNu8ienZcPj/M2I2q5/WenZXtFJLkLa217f43ceex8WcnzL1xbHynddaZtMb4OqvXAFiPfBQAAICDdmM+mshIt0o+ugFb1gIAAABsQVWdkeQXutNPJPnhKZa7/dj41glzx395fPQ660xaY3yd1WsAAAAAAGxIPjqZN+RtzrUHByc880ezdOe7zLMWAAAAdthtN3wmB379Vw6eXrvR3KF73ztOzL3uccS8y5jo459YzkMfe+gHq6cnuXonnltVX5nkLVnJVG5J8qTW2jVTLPm5sfGRE+YeNTa+eY117rCJNcbXWb0GwHoO/Z99D73L43LUvjvMsxYAAAB22C2jm/K+z1x48HRX56OJjHQj8tHN0ZC3OYf2WF66812ydNdj5lgKAAAAc7Y8ecpw3eseR+SEe99u3mVs1dWttQOzfkhV3SfJHyT5oqz8d/DdrbWLp1z2hrHxpC0S7jg2Xr31wg1ZCZw2s83CwXU2s30DQDL2f/Ydte8Ouf0+O14DAADsYbs6H01kpOuRj26ehjwAAADgkFFaRhnNu4yJRmk7+ryquneSP0xy7yQtydNaa2/pYenxkOyEJJdtMPfEsfH+VdcOJLlnt8YkB9dZvQYAAAAA7Hky0i8kH92afbNaGAAAAGA3qKq7JXlXkvt2Xz2rtfZbPS1/+dj4lAlzD16/Lck/rrPOXavquPUWqKp7JblLd3rFZosEAAAAAPYm+ejWacgDAAAAWEdV3TXJO5Pcv/vqua21l/f4iEuT3NqNz9igjiOTPPTgPa21W1dNee/YeN11Vl27ZLNFAgAAAAB7j3x0ezTkAQAAAKyhqu6Q5P8m+Zruq59vrf1in89ord2Q5I+602+uqvW2VHhCDv9yc62tIN6WHNpH4wc2eOQ53eeouwcAAAAA4AvIR7dPQx4AAABwyHIbDeaYpe4Xl29J8vDuq19prT1/G+ucU1WtO85bZ9pLus+lJC+vqiNWrXG3JAeDruuS/ObqBVprVyd5bXf6mKr6zjVqeWKSx3Snr+nuAQAAAADGzDv3XISMVD46naVZLQwAAAAwYK9L8uhu/MdJXllVX7XB/Ftba3+/nQe11v64ql6f5LuSfEeSd1XVS5NcleQBSZ6X5Eu66c9trf3rOks9L8mZSe6e5HVVdVqSi7prZyX5iW58bZIth2cAAAAAwJ4hH52ChjwAAACAL/SEsfE3JfmbCfP/OclJUzzvaVnZcuFbk3xjd4wbJXlRa+0V6y3QWttfVd+e5K1JjkvynO4Yd3WSs1trB6aoFQAAAADY3eSjU9CQBwAAABwySssobd5lTDSEGreitXZzkm+rqqckOSfJA5Mck+SaJO9J8rLW2p9vYp33V9UDkvxokrNzOAT7aJILk7y0tfapnssHAAAAgF1DRrrzdls+qiEPAAAAYJXWWvW0zgVJLtjC/N9O8ttTPvOTSX6mOwAAAAAAtkQ+Op1983owAAAAAAAAAAAA7CYa8gAAAAAAAAAAAKAHtqwFAAAADmkZZZTRvMuYqA2gRgAAAABgeGSkTMsb8gAAAAAAAAAAAKAHGvIAAAAAAAAAAACgB7asBQAAAA5Zbi3Lrc27jImGUCMAAAAAMDwyUqblDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANCDpXkXAAAAACyOUVpGafMuY6Ih1AgAAAAADI+MlGl5Qx4AAAAAAAAAAAD0QEMeAAAAAAAAAAAA9MCWtQAAAMAhoyTLA9jqYDTvAgAAAACAXUlGyrS8IQ8AAAAAAAAAAAB6oCEPAAAAAAAAAAAAeqAhDwAAAAAAAAAAAHqwNO8CAAAAgMUxSssobd5lTDSEGgEAAACA4ZGRMi1vyAMAAAAAAAAAAIAeaMgDAAAAAAAAAACAHtiyFgAAADhkubUst8Xf6mAINQIAAAAAwyMjZVrekAcAAAAAAAAAAAA90JAHAAAAAAAAAAAAPdCQBwAAAAAAAAAAAD1YmncBAAAAwOIYdceiG0KNAAAAAMDwyEiZljfkAQAAAAAAAAAAQA805AEAAAAAAAAAAEAPbFkLAAAAHDJKy3LavMuYaDSAGgEAAACA4ZGRMq0de0NeVd2tqn66qi6pqqur6paquqqq3l9Vv1RVD9vEGmdW1Zur6kB3/4Hu/Myd+BsAAAAAALZLRgoAAACw++3IG/Kq6olJ/leSY1dduld3PCTJlyU5e537K8mvJ3nGqkvHJ3l8ksdX1W8keWZrTfsnAAAAALBQZKQAAAAAe8PMG/Kq6qlJXpWVt/F9Iiuh03uTfDrJcUnul+Tbk/zbBsv8XA4HTR9I8uIkH+nu/ekkD+6uX5vk+b3/EQAAAAAA2yQjBQAAANg7ZtqQV1WnJvmNrARN70ny7a2169eYen5VHbnOGidnJVBKksuSPLK1dnN3fmlVvS3JxUlOS/KcqnpVa+0jff4dAAAAsFcsJ1kewHuVluddAMAmyUgBAABgWGSkTGvfjNc/P8lRST6Z5AnrBE1JktbaretcenYONw4+ayxoOnjfTUme1Z0uJfmxaQoGAAAAAOiRjBQAAABgD5lZQ15VnZLkUd3py1prn9zGGpXkcd3ph1pr71trXvf9h7vTs7v7AAAAAADmRkYKAAAAsPfM8g15Txwbv/HgoKq+qKq+rKqO3cQa90lyfDe+eMLcg9dPSHLSZosEAAAAAJgRGSkAAADAHjPLhryHdp/XJ7miqr6nqv46yaeT/H2ST1bVP1XVC6rqTuuscerY+EMTnjd+/dR1ZwEAAADrGg3oABgAGSkAAAAMzLxzTxnp8C3NcO37d59XJjk/yY+sMec+Sc5L8p1V9ZjW2lWrrp84Nj4w4Xn717lvoqo6YcKU47ayHgAAAABABpKRykcBAAAA+jPLhrwv7j5PSfLAJNcleW6SNyf5TJIHJHlhkscm+aokb6yqr2+tjTdw3nls/NkJz7txbLzer0nXs3/yFAAAAACALRlKRiofBQAAAOjJLBvy7th9HpVkOcljW2vvG7t+WVWdleSirAROX5fkCUneNDbn9mPjWyc875ax8dHbqhgAAAD2uFEqy6l5lzHRaAA1AkRGCgAAAIMjI2Vas2zI+1wOB05vXBU0JUlaa6Oq+qmshE1J8t35/LDpc2PjIyc876ix8c1brHXS9g3HJbl0i2sCAAAAAHvbUDJS+SgAAABAT2bZkHdDDodN71hvUmvt76rqY0mOT3L6GmscNGmLhTuOjSdt3bC6hgMbXa/SUQoAAAAAbNkgMlL5KAAAAEB/9s1w7f1j4w0DnbG591j1/fh9J0xYY/xXnPvXnQUAAAAAsDNkpAAAAAB7zCzfkPd3OfxrziMmzD14/bZV318+Nj5lwhrj16+YMBcAAABYw6itHItuCDUCREYKAAAAgyMjZVqzfEPen46N7zdh7n27z4+t+v6jSa7qxmdMWOORY2tcOak4AAAAAIAZk5ECAAAA7DGzbMh7W5J/68ZPWG9SVZ2R5Nju9D3j11prLcmF3ekpVfXQddZ4aA7/+vPC7j4AAAAAgHmSkQIAAADsMTNryGutfSrJb3an31JV37V6TlXdOclLx756xRpLvTSHt2k4v6qOXrXG0UnO705vW7UeAAAAsAXLqcEcAItORgoAAADDM+/cU0Y6fLN8Q16SvCDJv3Tj11TV+VX1jVX1tVV1TpK/SPKg7vr/aq1dunqB1trfJ3lJd3pakkuq6slVdVpVPTnJJd33SfJLrbV/mNHfAgAAAACwVTJSAAAAgD1kaZaLt9auraozs7I1w8lJ/mN3rPZ/kvzoBks9L8k9kjwtyYOTvH6NOa9M8vypCgYAAAAA6JGMFAAAAGBvmfUb8tJauyIrv/D8qSTvT/LpJLcmOZDkd5J8U2vt6a21f9tgjVFr7elJvi3JhUmu6ta4qjv/1tbaua210Sz/FgAAAACArZKRAgAAAOwdM31D3kGttRuzsqXCSybNnbDO25O8vZeiAAAAgC+wnMpyat5lTDSEGgHGyUgBAABgGGSkTGvmb8gDAAAAAAAAAACAvUBDHgAAAAAAAAAAAPRgR7asBQAAAIahtWTUFn+rg9bmXQEAAAAAsBvJSJmWN+QBAAAAAAAAAABADzTkAQAAAAAAAAAAQA805AEAAAAAAAAAAEAPluZdAAAAALA4llNZTs27jImGUCMAAAAAMDwyUqblDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0ANb1gIAAACHLGdflgfw+70h1AgAAAAADI+MlGn5lwEAAAAAAAAAAIAeaMgDAAAAAAAAAACAHmjIAwAAAAAAAAAAgB4szbsAAAAAYHG0Vhm1mncZE7UB1AgAAAAADI+MlGl5Qx4AAAAAAAAAAAD0QEMeAAAAAAAAAAAA9MCWtQAAAMAhy6ksZ/G3OhhCjQAAAADA8MhImZY35AEAAAAAAAAAAEAPNOQBAAAAAAAAAABADzTkAQAAAAAAAAAAQA+W5l0AAAAAsDiW274st8X//d4QagQAAAAAhkdGyrT8ywAAAAAAAAAAAEAPNOQBAAAAAAAAAABAD2xZCwAAABwySmU0gN/vjVLzLgEAAAAA2IVkpExr8f/rAQAAAAAAAAAAgAHQkAcAAAAAAAAAAAA90JAHAAAAAAAAAAAAPViadwEAAADA4hilspyadxkTjQZQIwAAAAAwPDJSpuUNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0IOleRcAAAAALI7lti/LbfF/vzeEGgEAAACA4ZGRMi3/MgAAAAAAAAAAANADDXkAAAAAAAAAAADQA1vWAgAAAIeMUhml5l3GREOoEQAAAAAYHhkp0/KGPAAAAAAAAAAAAOiBhjwAAAAAAAAAAADogYY8AAAAAAAAAAAA6MHSvAsAAAAAFsco+7I8gN/vjQZQIwAAAAAwPDJSpuVfBgAAAAAAAAAAAHqgIQ8AAAAAAAAAAAB6YMtaAAAA4JDlti/LbfF/vzeEGgEAAACA4ZGRMi3/MgAAAABrqKp7VNVZVfXCqnpHVX2yqlp3XNDTM75hbM3NHu9eZ60rN3n/lX3UDgAAAADsXvLR7fOGPAAAAIC1XTPvAtbx4XkXAAAAAADsevLRbdKQBwAAADDZ/iRXJHl0z+temuQBm5j3siRndONXT5h7YZLnb3D91k08DwAAAADgIPnoFmjIAwAAAA4ZpTLKvnmXMdEotROPeWFWAqFLW2vXVNVJST7a5wNaazcm+eBGc6rqmCQP7U7/sbX2ZxOWva61tuGaAAAAAMDaZKSHyEe3SUMeAAAAwBpaay+Ydw2dJyc5qhu/Zp6FAAAAAAB7g3x0+xa/nRMAAABgb3tq99kykMAJAAAAAKAng8tHvSEPAAAAOGTUKsttR7aDncpoADX2oarul+TrutP3tNZ63RICAAAAAPh8MtLFMdR81BvyAAAAABbXU8fGr97kPY+sqr+pqhur6qaq+mhV/U5VnV1Vuz+lAwAAAAB2i0Hmo96QBwAAAAzdcZNylNbagR2qpW/f233enORNm7znPqvOT+qOJyW5pKqe3Fr7WC/VAQAAAACLYLdmpIPMRzXkAQAAAEN36SbmDO7NcFX19Unu252+pbX2mQm33JrkbUn+IMkHk1yf5JgkD0vyw0lOTPLwJO+qqoe11q6fRd0AAAAAwI7bdRnpkPNRDXkAAADAIcvZl+Xsm3cZEw2hxh5839j4tzYx/yGttevW+P7dVfWyrPyC9NFJTk3ygiQ/PnWFAAAAALDLyEgXxmDzUQ15AAAAwNCdnuTqeRfRp6o6KskTu9OrkvzhpHvWCZsOXruhqp6U5CNJjk3yjKp6bmvt1h7KBQAAAADma1dlpEPPRzXkAQAAAEN3dWvtwLyL6NnjsrKdQpK8trW2PO2CrbXrq+r1SX4kyR2TnJbkz6ZdFwAAAACYu92WkQ46H9WQBwAAABwyavsyaou/1cEQapzSU8fGm9mOYbMuHxsf3+O6AAAAALAryEgXwqDz0V39LwMAAAAwNFV1jySP6U7/X2vtg30u3+NaAAAAAAC92g35qIY8AAAAgMXylBze1aDPX38myf3Hxlf1vDYAAAAAwLQGn49qyAMAAABYLAe3Y7gtyW/3tWhV3TXJk7vTm5Jc1tfaAAAAAAA9GXw+qiEPAAAAOGQ5+wZzDEFVnVNVrTvO28T8r0zy4O70Ha21azf5nDOr6ugNrt85yRuSHNt99crW2i2bWRsAAAAA9pJ55567KSPdq/no0uQpAAAAAHtPVT0iycljX91tbHxyVZ0zPr+1dkEPj/3+sfGrt3Dfc5O8tqrenOS9ST6S5LNJjknysCQ/nOTEbu6Hk5w3baEAAAAAwO4lH90+DXkAAAAAazs3nx8AjXt4d4y7YJqHVdW+JE/pTv81yUVbXOKLs1LzuRvM+dMkT2mtfXrrFQIAAAAAe4h8dJs05AEAAACHjJIst5p3GRON5l3AbDwqyfHd+He2uGXCT3b3PyzJV2Tl16rHJLkpyVVJ3p/kdUn+oLXW+ioYAAAAAHYbGenc7Jp8VEMeAAAAwBpaa+ckOWfKNS7IJn8Z2lp7V5JtJX2ttcuSXLadewEAAAAAVpOPbt++eRcAAAAAAAAAAAAAu4GGPAAAAAAAAAAAAOiBLWsBAACAQ0bZl9EAfr83hBoBAAAAgOGRkTIt/zIAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANCDpXkXAAAAACyO5bYvy23xf783hBoBAAAAgOGRkTIt/zIAAAAAAAAAAADQAw15AAAAAAAAAAAA0ANb1gIAAACHjFIZpeZdxkRDqBEAAAAAGB4ZKdPyhjwAAAAAAAAAAADogYY8AAAAAAAAAAAA6IGGPAAAAAAAAAAAAOjB0rwLAAAAABbHqO3Lclv83++NBlAjAAAAADA8MlKm5V8GAAAAAAAAAAAAeqAhDwAAAAAAAAAAAHpgy1oAAADgkOVUlgfw+73l1LxLAAAAAAB2IRkp01r8/3oAAAAAAAAAAABgADTkAQAAAAAAAAAAQA805AEAAAAAAAAAAEAPluZdAAAAALA4Rq0yajXvMiYaQo0AAAAAwPDISJmWN+QBAAAAAAAAAABADzTkAQAAAAAAAAAAQA9sWQsAAAAcMsq+LA/g93ujAdQIAAAAAAyPjJRp+ZcBAAAAAAAAAACAHmjIAwAAAAAAAAAAgB5oyAMAAAAAAAAAAIAeLM27AAAAAGBxjNq+jNri/35vCDUCAAAAAMMjI2Va/mUAAAAAAAAAAACgBxryAAAAAAAAAAAAoAe2rAUAAAAOWU5lOTXvMiYaQo0AAAAAwPDISJmWN+QBAAAAAAAAAABADzTkAQAAAAAAAAAAQA805AEAAAAAAAAAAEAPluZdAAAAALA4Rm1fRm3xf783hBoBAAAAgOGRkTIt/zIAAAAAAAAAAADQAw15AAAAAAAAAAAA0ANb1gIAAACHjJIsp+ZdxkSjeRcAAAAAAOxKMlKm5Q15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQg6V5FwAAAAAsjlHbl1Fb/N/vDaFGAAAAAGB4ZKRMy78MAAAAAAAAAAAA9EBDHgAAAAAAAAAAAPTAlrUAAADAIcttX5YHsNXBEGoEAAAAAIZHRsq0/MsAAAAAAAAAAABADzTkAQAAAAAAAAAAQA805AEAAAAAAAAAAEAPluZdAAAAALA4Wiqj1LzLmKgNoEYAAAAAYHhkpEzLG/IAAAAAAAAAAACgBxryAAAAAAAAAAAAoAca8gAAAAAAAAAAAKAHS/MuAAAAAFgcy21fltvi/35vCDUCAAAAAMMjI2Va/mUAAAAAAAAAAACgBxryAAAAAAAAAAAAoAe2rAUAAAAOGaUyajXvMiYaZfFrBAAAAACGR0bKtGb6hryqaps83r2Jtc6sqjdX1YGquqX7fHNVnTnLvwEAAAAAYLtkpAAAAAB7y8JvWVsrXpHkHUken+T4JEd2n49P8o6qekVVafsEAAAAAHYdGSkAAADAcOzUlrX/K8mvbXD9xg2u/VySZ3TjDyR5cZKPJLlfkp9O8uDu+rVJnj91pQAAAAAA/ZORAgAAAOwBO9WQ94nW2ge3elNVnZyVQClJLkvyyNbazd35pVX1tiQXJzktyXOq6lWttY/0UjEAAADsQcupLC/+C/WzHC+BAgZHRgoAAAADICNlWov+X8+zc7hp8FljQVOSpLV2U5JndadLSX5s50oDAAAAAJg5GSkAAADAgCxsQ15VVZLHdacfaq29b6153fcf7k7P7u4DAAAAABg0GSkAAADA8OzUlrXbcZ8kx3fjiyfMvTjJVyQ5IclJST46u7IAAABg92qtMmqL38fRBlAjQA9kpAAAALDDZKRMa6fekPfEqvpwVd1cVTdU1T9U1aur6hs3uOfUsfGHJqw/fv3UdWcBAAAAAMyHjBQAAABgD9ipN+Tdf9X5yd3x1Kp6a5JzWmvXr5pz4tj4wIT1969z36ZU1QkTphy31TUBAAAAAMYsbEYqHwUAAADoz6wb8m5K8rYkf5SVX2h+Nsndk5yR5JlJjk1ydpILq+pbWmv/NnbvncfGn53wnBvHxnfaRp37J08BAAAAANiyIWSk8lEAAACAnsy6Ie/41tp1a3z/rqo6P8k7kjw4K+HTDyf51bE5tx8b3zrhObeMjY/eRp0AAABAklH2ZZR98y5joiHUCNCRkQIAAMCAyEiZ1kwb8tYJmg5eu6aqvjPJFUmOTPKsfH7Y9Lmx8ZETHnXU2PjmLZaZTN7C4bgkl25jXQAAAABgDxtIRiofBQAAAOjJrN+Qt6HW2j9V1buSfFuSk6vq3q21q7rLN4xNnbTFwh3HxpO2blirjgMbXa+qrS4JAAAAADDRImSk8lEAAACA/sy1Ia9zeVbCpiQ5PsnBsGk8BDphwhrjv+Dc31NdAAAAsOcst8pyW/zGiyHUCLAFMlIAAABYEDJSprUImwmv91/H5WPjUyasMX79iunKAQAAAADYUTJSAAAAgF1iERry7j82vmps/NGx8zMmrPHI7vNjSa7spywAAAAAgB0hIwUAAADYJebakFdV903yLd3pP7XWPnbwWmutJbmwOz2lqh66zhoPzeFff17Y3QcAAAAAsPBkpAAAAAC7y8wa8qrq26tqaYPr90zypiS36756+RrTXprktm58flUdvWqNo5Oc353e1s0HAAAAtmnUajAHwKKTkQIAAMDwzDv3lJEO37phUA/OT3K7qvrdJH+elW0Sbk5ytyTfkOSZSY7t5r43a4RNrbW/r6qXJHluktOSXFJVv5jkI0nul+Q5SR7cTf+l1to/zOqPAQAAAADYIhkpAAAAwB4zy4a8JLl3kmd1x3p+N8m5rbVb1rn+vCT3SPK0rARLr19jziuTPH+KOgEAAAAAZkFGCgAAALCHzLIh7/uTnJHkYUnum5Vffd4lyWeT7E/yZ0le3Vr7840Waa2Nkjy9+xXpM5Kc3q31ySSXJnlFa+0ds/ojAAAAYC9pbV9Gbd+8y5ioDaBGgMhIAQAAYHBkpExrZg15rbWLk1zc43pvT/L2vtYDAAAAAJglGSkAAADA3qNVEgAAAAAAAAAAAHqgIQ8AAAAAAAAAAAB6MLMtawEAAIDhWU5lOTXvMiYaQo0AAAAAwPDISJmWN+QBAAAAAAAAAABADzTkAQAAAAAAAAAAQA9sWQsAAAAcMmrJqC3+VgejNu8KAAAAAIDdSEbKtLwhDwAAAAAAAAAAAHqgIQ8AAAAAAAAAAAB6oCEPAAAAAAAAAAAAerA07wIAAACAxTFq+zJqi//7vSHUCAAAAAAMj4yUafmXAQAAAAAAAAAAgB5oyAMAAAAAAAAAAIAe2LIWAAAAOKSlMkrNu4yJ2gBqBAAAAACGR0bKtLwhDwAAAGANVXWPqjqrql5YVe+oqk9WVeuOC3p8znlj6046vmET6x1bVT9bVX9dVddX1We68c9W1bF91Q0AAAAA7F7y0e3zhjwAAACAtV0z7wK2qqpOT3JhknutuvTV3XFuVT2utXbZjhcHAAAAAAyJfHSbNOQBAAAATLY/yRVJHj3j5zxgwvWPrnehqo5P8ntJ7pnktiT/I8lF3eWzkvx4knsnuaiqvra19rHpywUAAAAA9gD56BZoyAMAAAAOWW6V5VbzLmOiHarxhUkuTXJpa+2aqjopGwQ+fWitfXCK238+K2FTkjyltfbGsWvvqarLkryhm/OiJE+b4lkAAAAAsCvJSA+Rj27TvlktDAAAADBkrbUXtNYuaq0t/NYMVXXPJN/bnb5zVdiUJOm+e2d3+tTuHgAAAACALyAf3T4NeQAAAADD9x1JjujGr9pg3gXd5xHdPQAAAAAAQ7dQ+aiGPAAAAIDh+/qx8cUbzBu/9ogZ1QIAAAAAsJMWKh9dmtXCAAAAwPCM2r6M2uL/fm8INW5HVb0rydckuXOS65JcnuT3k7yitfavG9x6avd5fWvt6vUmtdY+XlWfSXKXsXsAAAAAgI6MdH52Sz6qIQ8AAAAYuuOqasMJrbUDO1TLtL55bHz3JGd0x3Oq6pzW2oXr3Hdi97mZv3N/kq8cuwcAAAAAGLbdkpHuinxUQx4AAAAwdJduYs7GadT8/W2Styb5iyRXJbldkq9I8j1JHp3kmCS/W1Xf3lp7xxr337n7/OwmnnVj93mnKeoFAAAAABbH0DPSXZWPasgDAAAADhmlMmqLnMusGC10drRlL22tnbfG9+9P8ltV9UNJfj3JEUl+s6pObq3dvGru7bvPWzfxvFu6z6O3UywAAAAA7GYy0h236/JRDXkAAADA0J2e5Op5F7FdrbXrJlx/RVWdluTcJPdO8oQkr1017XNJ7pDkyE088qjuc3VoBQAAAAAM02Az0t2Yj2rIAwAAAIbu6tbagXkXMWOvyErglCRn5AsDpxuyEjhtZpuFO3afm9m+AQAAAABYfLs9Ix1UPrpvVgsDAAAA0JvLx8bHr3H9YNh2wibWOrH73D9VRQAAAAAAO2NQ+ag35AEAAACHtFRGqXmXMVEbQI09m/QHX57ka5PctaqOa62tuT1FVd0ryV260yt6rA8AAAAAdgUZ6UIaVD7qDXkAAAAAi+/+Y+Or1rj+3rHxGRusM37tkqkqAgAAAADYGYPKRzXkAQAAACy+HxobX7zG9bclGXXjH9hgnXO6z1F3DwAAAADAohtUPqohDwAAADhk1JJRqwEc8/5fanOq6pyqat1x3hrXH1BVJ09Y44eSPL07vTrJW1bP6bZgeG13+piq+s411nliksd0p69Zb9sGAAAAANjLZKT92av56NKsFgYAAAAYsqp6RJLxMOhuY+OTq+qc8fmttQu28ZivTfKbVfUnSd6R5G+TfCormc0pSb43ybd0c5eT/FBr7cZ11npekjOT3D3J66rqtCQXddfOSvIT3fjaJM/fRq0AAAAAwB4hH90+DXkAAAAAazs3yfevc+3h3THugm0+54gk39wd6/lUkqe31tbdRqG1tr+qvj3JW5Mcl+Q53THu6iRnt9YObLNWAAAAAGBvkI9uk4Y8AAAAgPl5e1a2W3hYkgcnuWeSY5NUkk8n+eskv5/kgtbaZyYt1lp7f1U9IMmPJjk7yUndpY8muTDJS1trn+r3TwAAAAAA2JZdmY9qyAMAAAAOGbV9GbV98y5jop2osbV2TpJzplzjgmzwy9DW2ieS/J/u6EVr7ZNJfqY7AAAAAIAtkJGukI9u3+L/1wMAAAAAAAAAAAADoCEPAAAAAAAAAAAAemDLWgAAAOCQUauMWs27jImGUCMAAAAAMDwyUqblDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANCDpXkXAAAAACyOUSqj1LzLmGgINQIAAAAAwyMjZVrekAcAAAAAAAAAAAA90JAHAAAAAAAAAAAAPbBlLQAAAHBIa5VRW/ytDtoAagQAAAAAhkdGyrS8IQ8AAAAAAAAAAAB6oCEPAAAAAAAAAAAAeqAhDwAAAAAAAAAAAHqwNO8CAAAAgMUxapVRq3mXMdEQagQAAAAAhkdGyrS8IQ8AAAAAAAAAAAB6oCEPAAAAAAAAAAAAemDLWgAAAOAQ2zEAAAAAAHuZjJRpeUMeAAAAAAAAAAAA9EBDHgAAAAAAAAAAAPRAQx4AAAAAAAAAAAD0YGneBQAAAACLY9Qqo1bzLmOiIdQIAAAAAAyPjJRpeUMeAAAAAAAAAAAA9EBDHgAAAAAAAAAAAPTAlrUAAADAIS3JKIu/1UGbdwEAAAAAwK4kI2Va3pAHAAAAAAAAAAAAPdCQBwAAAAAAAAAAAD3QkAcAAAAAAAAAAAA9WJp3AQAAAMDiGLXKqNW8y5hoCDUCAAAAAMMjI2Va3pAHAAAAAAAAAAAAPdCQBwAAAAAAAAAAAD3QkAcAAAAAAAAAAAA9WJp3AQAAAMDiGKUyajXvMiYaZfFrBAAAAACGR0bKtLwhDwAAAAAAAAAAAHqgIQ8AAAAAAAAAAAB6YMtaAAAA4JBRG8h2DAOoEQAAAAAYHhkp0/KGPAAAAAAAAAAAAOiBhjwAAAAAAAAAAADogYY8AAAAAAAAAAAA6MHSvAsAAAAAFseoVUat5l3GREOoEQAAAAAYHhkp0/KGPAAAAAAAAAAAAOiBhjwAAAAAAAAAAADogS1rAQAAgMNapQ1hq4Mh1AgAAAAADI+MlCl5Qx4AAAAAAAAAAAD0QEMeAAAAAAAAAAAA9EBDHgAAAAAAAAAAAPRgad4FAAAAAItjlMooNe8yJhpCjQAAAADA8MhImZY35AEAAAAAAAAAAEAPNOQBAAAAAAAAAABAD2xZCwAAABwyapVRW/ytDoZQIwAAAAAwPDJSpuUNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0IOleRcAAAAALI7WKq3VvMuYaAg1AgAAAADDIyNlWt6QBwAAAAAAAAAAAD3QkAcAAAAAAAAAAAA9sGUtAAAAcMioJaMBbHUwavOuAAAAAADYjWSkTMsb8gAAAAAAAAAAAKAHGvIAAAAAAAAAAACgBxryAAAAAAAAAAAAoAdL8y4AAAAAWBytVVqreZcx0RBqBAAAAACGR0bKtLwhDwAAAAAAAAAAAHqgIQ8AAAAAAAAAAAB6YMtaAAAA4JDWKqMBbHVgOwYAAAAAYBZkpEzLG/IAAAAAAAAAAACgBxryAAAAAAAAAAAAoAca8gAAAAAAAAAAAKAHS/MuAAAAAFgcLUlr865isgGUCAAAAAAMkIyUaXlDHgAAAAAAAAAAAPRAQx4AAAAAAAAAAAD0wJa1AAAAwCGjVEapeZcx0RBqBAAAAACGR0bKtLwhDwAAAAAAAAAAAHqgIQ8AAAAAAAAAAAB6oCEPAAAAAAAAAAAAerA07wIAAACAxdFapbWadxkTDaFGAAAAAGB4ZKRMyxvyAAAAAAAAAAAAoAca8gAAAAAAAAAAAKAHGvIAAAAAAAAAAACgB0vzLgAAAABYHKNWGbWadxkTDaFGAAAAAGB4ZKRMyxvyAAAAAAAAAAAAoAca8gAAAAAAAAAAAKAHtqwFAAAADmlt5Vh0Q6gRAAAAABgeGSnT8oY8AAAAAAAAAAAA6IGGPAAAAAAAAAAAAOiBhjwAAAAAAAAAAADowVwa8qrqxVXVxo5v2MQ9Z1bVm6vqQFXd0n2+uarOnH3FAAAAsEe0ShvAkVbz/l8KYCoyUgAAAFhQC5B/ykiHbccb8qrqgUmevYX5VVWvSPKOJI9PcnySI7vPxyd5R1W9oqr8VwYAAAAALDwZKQAAAMDutaMNeVW1L8n/TrKU5BObvO3nkjyjG38gyXcneUj3+YHu+2ckeVF/lQIAAAAA9E9GCgAAALC7Le3w8/5TktOTfCjJW5L8540mV9XJSX66O70sySNbazd355dW1duSXJzktCTPqapXtdY+MpPKAQAAYA84tN3BghtCjQDrkJECAADAApORMq0de0NeVZ2Yw7/Q/OEkt27itmfncNPgs8aCpiRJa+2mJM/qTpeS/Nj0lQIAAAAA9E9GCgAAALD77eSWtb+W5E5JXt1ae/ekyVVVSR7XnX6otfa+teZ133+4Oz27uw8AAAAAYNHISAEAAAB2uR1pyKuqJyU5K8mnk/zUJm+7T5Lju/HFE+YevH5CkpO2Wh8AAAAAwCzJSAEAAAD2hqXJU6ZTVcck+ZXu9DmttWs3eeupY+MPTZg7fv3UJB/d5DMAAACAMaNWGbXFf7HSTtRYVfdI8pDuOL07ju0uv7q1dk5Pz7lLkm9N8qgkX5vkvknukOT6JH+X5KIkv9lau27COlcm+dJNPPKfW2snbb9iYKtkpAAAADAcMtIV8tHtm3lDXpIXJzkuyZ8leeUW7jtxbHxgwtz969y3KVV1woQpx211TQAAAGDwrpn1A6rqsUnekuSoNS7fLckZ3fGTVfXdrbU/mXVNwEwsdEYqHwUAAADWIB/dppk25FXVI5Kcm+S2JM9srbUt3H7nsfFnJ8y9cWx8py0846D9k6cAAAAAe9j+JFckeXTP6x6blbBplORdSX4/yV8nuS4r205+T5InJ7lnkouq6uGttb+asOaFSZ6/wfVbpysZ2IqBZKTyUQAAAGAj8tEtmFlDXlUdmeQ3klSS/9la+9stLnH7sfGk/yFuGRsfvcXnAAAAAJ3WVo5Ft0M1vjDJpUkuba1dU1Unpf8tIP8tySuS/LfW2r+suvaBJL9XVZck+dWsbNPwy1nZumEj17XWPthzncA2yEgBAABgeGSkh8hHt2mWb8j7L0lOTfIvSX52G/d/bmx85IS5468tvHkbz5q0hcNxWfkPDAAAANgjWmsv2IFn/E6S35kw5/yqemqS05J8Q1Ud21r71KxrA3oxlIxUPgoAAAB8Hvno9s2kIa+qTknyn7vTZ7XWbtxo/jpuGBtP2mLhjmPjSVs3fIHW2oGNrlfVVpcEAAAA6NO7sxI47UtynyQLHTgBw8pI5aMAAADAgnt3BpSPzuoNec/Oyi82/ynJHarqu9aY81Vj42+qquO68e914dR4CHTChOeN/4Jz/1aLBQAAAFhw42++Gs2tCmArZKQAAAAA/RhUPjqrhryD/yPcN8nrNjH/Z8bG90lyY5LLx747ZcL949ev2MTzAAAAgDW0lrS2+G9Cam3eFey4M7rP25L844S5j6yqv0lyvySV5Jokf5GVjObC1vbg/3owHzJSAAAAGCAZ6UIaVD46q4a8Pnw0yVVJ7p3D/6Ou55Hd58eSXDnDmgAAAIDFc9yk7RQnbce4yKrq25J8dXf6ztbaZybccp9V5yd1x5OSXFJVT26tfazXIoFZkZECAAAAm7FrM9Ih5qP7ZrFoa+2c1lptdCT52bFbvnHs2pXdGi3Jhd31U6rqoWs9q/v+4K8//cobAAAA9p5Ls7I940bHIFXVFyd5eXe6nM9/g9ZqtyZ5W5L/mOQbkjw4yTcm+S85/L/Bw5O8q6ruOot6gcNkpAAAAMAO2pUZ6VDz0UV+Q16SvDTJD2alzvOr6pGttZsPXqyqo5Oc353e1s0HAAAAtqmlhrEdQxa/xmlV1RFJXpvkS7uvfq619oENbnlIa+26Nb5/d1W9LMmbkjw6yalJXpDkx3ssF5idl0ZGCgAAADtGRroYhpyPzuQNeX1prf19kpd0p6ele21gVZ1WVU9Ockn3fZL8UmvtH+ZRJwAAADBXpyc5ccIxRL+W5Mxu/H+TvGijyeuETQev3ZCVLRk+1X31jKo6socagRmTkQIAAACbsBsz0sHmo4v+hrwkeV6SeyR5WlZeJfj6Nea8Msnzd7IoAAAAYGFc3Vo7MO8i+lRV/z3JM7rT9yZ5YmtteZo1W2vXV9Xrk/xIkjtmpYHnz6YqFNgpMlIAAABgI7sqIx16PrrQb8hLktbaqLX29CTfluTCJFdlZc/fq7rzb22tndtaG82xTAAAAIBeVNVzkjy3O/1/Sc4a355ySpePjY/vaU1gxmSkAAAAwF6xG/LRub0hr7V2XpLztjD/7UnePqt6AAAAgKR1x6IbQo3bUVX/IckvdKdXJHlMa+36Ph/R41rAlGSkAAAAsHhkpPOzW/LRhX9DHgAAAMBeUFXfl+Rl3ek/Jfnm1tone37M/cfGV/W8NgAAAADAtuymfFRDHgAAAMCcVdUTkrwqK7/QPJDkUa21XgOhqrprkid3pzcluazP9QEAAAAAtmO35aMa8gAAAIBDWqvBHENQVedUVeuO89aZ8+gkr0tyRJJPZOWXn1du8TlnVtXRG1y/c5I3JDm2++qVrbVbtvIMAAAAANgL5p177qaMdK/mo0uzWhgAAABgyKrqEUlOHvvqbmPjk6vqnPH5rbULtvGMhyZ5S5Ijk/xbkmcnuV1VfdUGtx1orV236rvnJnltVb05yXuTfCTJZ5Mck+RhSX44yYnd3A8nOW+rtQIAAAAAe4d8dPs05AEAAACs7dwk37/OtYd3x7gLtvGMM5PcoRvfLslrN3HPD6zzrC/OSs3nbnDvnyZ5Smvt01uoEQAAAADYe+Sj26QhDwAAAGD4fjLJo7Lya8+vyMqvVY9JclOSq5K8PyvbPvxBa63NqUYAAAAAgFlYqHxUQx4AAABwWOuORbcDNbbWzklyzpRrXJANfhnaWjsvPWyP0Fq7LMll064DAAAAAHuejHRlefnotu2bdwEAAAAAAAAAAACwG2jIAwAAAAAAAAAAgB7YshYAAAA4rFVaq3lXMdkQagQAAAAAhkdGypS8IQ8AAAAAAAAAAAB6oCEPAAAAAAAAAAAAeqAhDwAAAAAAAAAAAHqwNO8CAAAAgMXR2sqx6IZQIwAAAAAwPDJSpuUNeQAAAAAAAAAAANADDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0IOleRcAAAAALI7WKq3VvMuYaAg1AgAAAADDIyNlWt6QBwAAAAAAAAAAAD3QkAcAAAAAAAAAAAA9sGUtAAAAcFirlWPRDaFGAAAAAGB4ZKRMyRvyAAAAAAAAAAAAoAca8gAAAAAAAAAAAKAHGvIAAAAAAAAAAACgB0vzLgAAAABYHK2tHItuCDUCAAAAAMMjI2Va3pAHAAAAAAAAAAAAPdCQBwAAAAAAAAAAAD2wZS0AAABwWOuORTeEGgEAAACA4ZGRMiVvyAMAAAAAAAAAAIAeaMgDAAAAAAAAAACAHmjIAwAAAAAAAAAAgB4szbsAAAAAYHG0Vmmt5l3GREOoEQAAAAAYHhkp0/KGPAAAAAAAAAAAAOiBhjwAAAAAAAAAAADogS1rAQAAgM/X5l0AAAAAAMAcyUiZgjfkAQAAAAAAAAAAQA805AEAAAAAAAAAAEAPNOQBAAAAAAAAAABAD5bmXQAAAACwOFqrtFbzLmOiIdQIAAAAAAyPjJRpeUMeAAAAAAAAAAAA9EBDHgAAAAAAAAAAAPTAlrUAAADAYa07Ft0QagQAAAAAhkdGypS8IQ8AAAAAAAAAAAB6oCEPAAAAAAAAAAAAeqAhDwAAAAAAAAAAAHqwNO8CAAAAgEVS3bHohlAjAAAAADA8MlKm4w15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANADW9YCAAAAh7XuWHRDqBEAAAAAGB4ZKVPyhjwAAAAAAAAAAADogYY8AAAAAAAAAAAA6IGGPAAAAAAAAAAAAOjB0rwLAAAAABZI645FN4QaAQAAAIDhkZEyJW/IAwAAAAAAAAAAgB5oyAMAAAAAAAAAAIAe2LIWAAAAOKwlaTXvKiazHQMAAAAAMAsyUqbkDXkAAAAAAAAAAADQAw15AAAAAAAAAAAA0AMNeQAAAAAAAAAAANCDpXkXAAAAACyO1laORTeEGgEAAACA4ZGRMi1vyAMAAAAAAAAAAIAeaMgDAAAAAAAAAACAHmjIAwAAAAAAAAAAgB4szbsAAAAAYIG07lh0Q6gRAAAAABgeGSlT8oY8AAAAAAAAAAAA6IGGPAAAAAAAAAAAAOiBLWsBAACAw1qtHItuCDUCAAAAAMMjI2VK3pAHAAAAAAAAAAAAPdCQBwAAAAAAAAAAAD3QkAcAAAAAAAAAAAA9WJp3AQAAAMDiqCTV5l3FZDXvAgAAAACAXUlGyrS8IQ8AAAAAAAAAAAB6oCEPAAAAAAAAAAAAemDLWgAAAOCw1h2Lbgg1AgAAAADDIyNlSt6QBwAAAAAAAAAAAD3QkAcAAAAAAAAAAAA90JAHAAAAAAAAAAAAPViadwEAAADAAmm1ciy6IdQIAAAAAAyPjJQpeUMeAAAAAAAAAAAA9EBDHgAAAAAAAAAAAPTAlrUAAADAYa07Ft0QagQAAAAAhkdGypS8IQ8AAAAAAAAAAAB6oCEPAAAAAAAAAAAAeqAhDwAAAAAAAAAAAHqwNO8CAAAAgAXSumPRDaFGAAAAAGB4ZKRMyRvyAAAAAAAAAAAAoAca8gAAAAAAAAAAAKAHtqwFAAAADrMdAwAAAACwl8lImZI35AEAAAAAAAAAAEAPNOQBAAAAAAAAAABADzTkAQAAAAAAAAAAQA+W5l0AAAAAsEBarRyLbgg1AgAAAADDIyNlSt6QBwAAAAAAAAAAAD3QkAcAAAAAAAAAAAA9sGUtAAAAcEi1lWPRDaFGAAAAAGB4ZKRMyxvyAAAAAAAAAAAAoAca8gAAAAAAAAAAAKAHGvIAAAAAAAAAAACgB0vzLgAAAABYIK07Ft0QagQAAAAAhkdGypS8IQ8AAABgDVV1j6o6q6peWFXvqKpPVlXrjgtm9Mzvqqp3VtXHq+pzVXVlVb2mqh66hTWOraqfraq/rqrrq+oz3fhnq+rYWdQNAAAAAOwu8tHt84Y8AAAAgLVds1MPqqrbJ3ljkrNWXfrS7nhKVZ3XWnvRhHVOT3JhknutuvTV3XFuVT2utXZZP5UDAAAAALuUfHSbvCEPAAAAYLL9Sf5ghuu/MofDpj9JcnaShyR5epKPZCXDeWFVnbveAlV1fJLfy0rYdFuSFyd5ZHe8uPvu3kku6uYCAAAAAGyGfHQLvCEPAAAAYG0vTHJpkktba9dU1UlJPtr3Q6rqjCRP6U5/L8njW2vL3fmlVfW2JH+Z5EuSvLiq3tRau26NpX4+yT278VNaa28cu/aeqrosyRu6OS9K8rR+/xIAAAAAYBeRj26TN+QBAAAArKG19oLW2kWttVlvzfDT3edykv8wFjYdrOOTSZ7TnX5RVn4V+nmq6p5Jvrc7feeqsOngOm9M8s7u9KndPQAAAAAAX0A+un0a8gAAAADmpKrulORR3em7WmsH1pn65iSf6cZPWOP6dyQ5ohu/aoNHXtB9HtHdAwAAAAAwF7s1H9WQBwAAABxSSaoN4Jj3/1D9eUiSo7rxxetNaq3dmuR9B++pqtutmvL1Y+N111l17RGbLRIAAAAA9goZ6Y7alfmohjwAAACA+Tl1bPyhCXMPXl9K8mXrrHN9a+3q9RZorX08h39Jeup68wAAAAAAdsCuzEeXZrUwAAAAwA45rmrj34NusNXBvJ04Np5U4/5V912+xjqb+Tv3J/nKVc8GAAAAAIZrqBnprsxHNeQBAAAAQ3fpJuYs6g4Odx4bf3bC3BvHxndaZ51Ja4yvs3oNAAAAAGCYhpqR7sp8VEPeFn3p//7H3H6fvBoAAGAv+dzos7ly3kXslFYrx6IbQo2bc/ux8a0T5t4yNj56nXUmrTG+zuo1ACb65x88OUt3PWbeZQAAALCDbrv+uuSX5l3FDpKR7qRdmY9qyAMAAACG7vQkV8+7iG363Nj4yAlzjxob37zGOnfYxBrj66xeAwAAAAAYpqFmpLsyH9WQBwAAAAzd1a21A/MuYptuGBtPeiX/HcfGq7deuCErgdNmXut/cJ3NbN8AAAAAACy+oWakuzIf3TerhQEAAIABagM6dofxkOyECXNPHBvvX2edSWuMr7N6DQAAAABg3rnn3spId2U+qiEPAAAAYH4uHxufMmHuweu3JfnHdda5a1Udt94CVXWvJHfpTq/YbJEAAAAAADOwK/NRDXkAAAAA83Npklu78RnrTaqqI5M89OA9rbVbV01579h43XVWXbtks0UCAAAAAMzArsxHNeQBAAAAzElr7YYkf9SdfnNVrbelwhNy+Jebb1nj+tuSjLrxD2zwyHO6z1F3DwAAAADAXOzWfFRDHgAAAHBYG9AxAFV1TlW17jhvnWkv6T6Xkry8qo5Ytcbdkvxid3pdkt9cvUBr7eokr+1OH1NV37lGLU9M8pju9DXdPQAAAADAuHnnnrsoI92r+ejSrBYGAAAAGLKqekSSk8e+utvY+OSqOmd8fmvtgu08p7X2x1X1+iTfleQ7kryrql6a5KokD0jyvCRf0k1/bmvtX9dZ6nlJzkxy9ySvq6rTklzUXTsryU9042uTPH87tQIAAAAAe4N8dPs05AEAAACs7dwk37/OtYd3x7gLpnjW07Ky5cK3JvnG7hg3SvKi1tor1lugtba/qr49yVuTHJfkOd0x7uokZ7fWDkxRKwAAAACw+8lHt0lDHgAAAHBItZVj0Q2hxq1ord2c5Nuq6ilJzknywCTHJLkmyXuSvKy19uebWOf9VfWAJD+a5OwkJ3WXPprkwiQvba19qufyAQAAAGDXkJHuvN2Wj86sIa+qDnYtnp7ktCTHZ+WVgEdnZT/fy5O8PckrN/OHVtWZSZ6R5CHdOtcm+Yskv9Fa+/0Z/AkAAADAHtZaOycr4c80a1yQLfwytLX220l+e8pnfjLJz3QHMEcyUgAAAGCo5KPbN8s35D0kyevWuXb3JGd0x09V1fe21t651sSqqiS/npWgadzxSR6f5PFV9RtJntla20W9nwAAAADAwMlIAQAAAPaYWW9Zuz/JnyT5y2788ST7kpyQ5DuTPCHJ3ZK8rapOb639zRpr/FwOB00fSPLiJB9Jcr8kP53kwd31a5M8f2Z/CQAAAADA1slIAQAAAPaQWTbk/Ulr7Us2uP6Gqjo7yVuSHJnkBUn+/fiEqjo5K4FSklyW5JHdnsFJcmlVvS3JxVnZ7uE5VfWq1tpHevwbAAAAYG9p3bHohlAjgIwUAAAAhkdGypT2zWrh1tryJua8NcmHutNHrjHl2TncNPissaDp4P03JXlWd7qU5Me2UysAAAAAQN9kpAAAAAB7z8wa8rbgxu7z9uNfVlUleVx3+qHW2vvWurn7/sPd6dndfQAAAAAAQyEjBQAAANgl5tqQV1WnJnlQd/qhVZfvk+T4bnzxhKUOXj8hyUl91AYAAAB7UhvQAbALyEgBAABgwcw795SRDt6ON+RV1R2q6suq6seT/EmSI7pLv7Jq6qlj49VB1Grj109ddxYAAAAAwJzJSAEAAAB2r6WdeEhVnZPkVRtMeUmS16767sSx8YEJj9i/zn2bUlUnTJhy3FbXBAAAAAA4aJEzUvkoAAAAQH92pCFvA3+V5Jmttfevce3OY+PPTljnxrHxnbZRx/7JUwAAAAAAevdXmX9GKh8FAAAA6MlONeS9Ncll3fjoJPdL8qQkj0/y2qr6sdbaRavuuf3Y+NYJ698yNj56ijoBAABgT6u2ciy6IdQIsMpbIyMFAACAhScjZVo70pDXWrsuyXVjX12a5PVV9X1JXp3kwqp6emvtgrE5nxsbHznhEUeNjW/eRomTtnA4Lis1AwAAAABs2YJnpPJRAAAAgJ7Mdcva1tprquqsrPwS9GVVdWFr7V+7yzeMTZ20xcIdx8aTtm5Yq44DG12vqq0uCQAAAAAw0SJkpPJRAAAAgP7sm3cBSS7sPu+Y5LFj34+HQCdMWGP8F5z7+ygKAAAA9qRWwzkAdg8ZKQAAACyKeeeeMtLBW4SGvGvHxl86Nr58bHzKhDXGr18xdUUAAAAAADtHRgoAAACwSyxCQ97xY+PxrRQ+muSqbnzGhDUe2X1+LMmV/ZQFAAAAALAjZKQAAAAAu8QiNOQ9cWz8twcHrbWWw1s1nFJVD13r5u77g7/+vLC7DwAAAABgKGSkAAAAALvEzBryquqcqrr9hDnPTvKt3emVSd67aspLk9zWjc+vqqNX3X90kvO709u6+QAAAMA02gAOgAGQkQIAAMBAzTv/lJEO2tIM1z4vyS9X1e9mJUT6SFa2W7hzkgck+Z4kD+/m3prkB1trt40v0Fr7+6p6SZLnJjktySVV9YvdWvdL8pwkD+6m/1Jr7R9m+PcAAAAAAGzFeZGRAgAAAOwps2zIS5IvTvKD3bGeA0me1lr7w3WuPy/JPZI8LSvB0uvXmPPKJM+fok4AAAAAgFmQkQIAAADsIbNsyHtUkm9O8o1JTk1yzyTHJvlckmuS/FWSi5K8obV203qLtNZGSZ7e/Yr0GUlOT3K3JJ9McmmSV7TW3jG7PwMAAAD2jmorx6IbQo0AkZECAADA4MhImdbMGvJaax/JyrYJr+hpvbcneXsfawEAAAAAzJqMFAAAAGDv2TfvAgAAAAAAAAAAAGA30JAHAAAAAAAAAAAAPZjZlrUAAADAALXuWHRDqBEAAAAAGB4ZKVPyhjwAAAAAAAAAAADogYY8AAAAAAAAAAAA6IEtawEAAIDDWlJD2OpgCDUCAAAAAMMjI2VK3pAHAAAAAAAAAAAAPdCQBwAAAAAAAAAAAD3QkAcAAAAAAAAAAAA9WJp3AQAAAMACad2x6IZQIwAAwP/f3r1HW3fW9aH//sJLyIWLlCipCQhCD4lWPQhhkAoEq0VKsEYOyqWWBohU2sER0RaqdghYUSmchkJbaeUQUaoFhYSLFOgBUkCUxEOtlmAMF08CBUUI5EISwvs7f6z5Zq/s7Nvaa+53r/nuz2eMOdYz13zmM38xj8mbL8+aDwAwPTJSluQNeQAAAAAAAAAAADACC/IAAAAAAAAAAABgBBbkAQAAAAAAAAAAwAgO7XcBAAAAwArp4Vh1U6gRAAAAAJgeGSlL8oY8AAAAAAAAAAAAGIEFeQAAAAAAAAAAADACW9YCAAAAt6meHatuCjUCAAAAANMjI2VZ3pAHAAAAAAAAAAAAI7AgDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACMwII8AAAAAAAAAAAAGIEFeQAAAAAAAAAAADACC/IAAAAAAAAAAABgBIf2uwAAAABghfRwrLop1AgAAAAATI+MlCV5Qx4AAAAAAAAAAACMwII8AAAAAAAAAAAAGIEFeQAAAAAAAAAAADCCQ/tdAAAAALA6qmfHqptCjQAAAADA9MhIWZY35AEAAAAAAAAAAMAILMgDAAAAAAAAAACAEdiyFgAAALg9Wx0AAAAAAAeZjJQleEMeAAAAAAAAAAAAjMCCPAAAAAAAAAAAABiBBXkAAAAAAAAAAAAwgkP7XQAAAACwQno4Vt0UagQAAAAApkdGypK8IQ8AAAAAAAAAAABGYEEeAAAAAAAAAAAAjMCWtQAAAMBtqmfHqptCjQAAAADA9MhIWZY35AEAAAAAAAAAAMAILMgDAAAAAAAAAACAEViQBwAAAAAAAAAAACM4tN8FAAAAACukh2PVTaFGAAAAAGB6ZKQsyRvyAAAAAAAAAAAAYAQW5AEAAAAAAAAAAMAIbFkLAAAA3KZ6dqy6KdQIAAAAAEyPjJRleUMeAAAAAAAAAAAAjMCCPAAAAAAAAAAAABiBBXkAAAAAAAAAAAAwgkP7XQAAAACwQno4Vt0UagQAAAAApkdGypK8IQ8AAAAAAAAAAABGYEEeAAAAAAAAAAAAjMCWtQAAAMAa2zEAAAAAAAeZjJQleUMeAAAAAAAAAAAAjMCCPAAAAAAAAAAAABiBBXkAAAAAAAAAAAAwgkP7XQAAAACwOqpnx6qbQo0AAAAAwPTISFmWN+QBAAAAAAAAAADACCzIAwAAAAAAAAAAgBFYkAcAAAAAAAAAAAAjOLTfBQAAAAArpIdj1U2hRgAAAABgemSkLMkb8gAAAAAAAAAAAGAEFuQBAAAAAAAAAADACGxZCwAAANyerQ4AAAAAgINMRsoSvCEPAAAAAAAAAAAARmBBHgAAAAAAAAAAAIzAgjwAAAAAAAAAAAAYwaH9LgAAAABYHdWzY9VNoUYAAAAAYHpkpCzLG/IAAAAAAAAAAABgBBbkAQAAAAAAAAAAwAhsWQsAAACs6eFYdVOoEQAAAACYHhkpS/KGPAAAAIAtVNV9q+plVXVFVd1QVV+oqg9X1U9V1UlLjPvoquoFj/dtMtandnj/p3ZbLwAAAABwMMlIF+MNeQAAAACbqKpzk7w+yT3mvj4pyVnDcUFVPa67P3GUSvrTo/QcAAAAAAAZ6S5YkAcAAACwgar6jiRvyCxcuj7JLyZ5b5ITkzw5yY8meVCSt1fVWd19/YKPuCzJt+2g36uSnDO0f22bvpck+dktrt+yg+cBAAAAAMhId8mCPAAAAOA21bNj1R2lGi/MLGi6NcljuvtDc9feU1V/luSlSc5I8rwkL15k8O6+IcmfbNWnqr4uycOH06u6+/e2Gfba7t5yTAAAAABgczLS27kwMtKFHbefDwcAAABYRVV1VpJHD6evWRc0HfHyJFcM7edW1Z33oJQnJbnL0P71PRgfAAAAAOAOZKS7Z0EeAAAAwB2dN9d+7UYduvtwktcNp/fMWjg1pqcdeVwmEjYBAAAAAMeE8+baMtIFWJAHAAAArOkJHXvrkcPnDUn+cIt+l861HzFmAVX1gCR/azh9f3d/cszxAQAAAIAN7HfuKSO9zVQzUgvyAAAAAO7ozOHzqu6+dYt+H9vgnrE8ba79azu851FV9T+q6oaqurGqPllV/7mqzquqGrk+AAAAAODYJSPdpUNH4yEAAAAAe+jU7XKU7r5mp4NV1QlJThlOt7yvu79YVTckOTnJfXb6jB36keHzK0l+e4f33H/d+f2G44eTfLCqntTdnx6lOgAAAABgVchI1+x7RmpBHgAAADB1l+2gzyK/fLzbXPv6HfQ/EjbddYFnbKmqHpnkm4fTN3f3l7e55ZYkb0nyriR/kuRLSb4uydlJnp1ZEPZdSd5dVWd395fGqhUAAAAA2Hcy0hXKSC3IAwAAANb0cKy6va3xhLn2LTvof/PweeKINfyDufbrdtD/Yd197Qbfv6+qXpXZr0cfk9mWET+X5HlLVwgAAAAAxyIZaSIjXYoFeQAAAMDUnZXksyOOd9Nc+/gd9L/L8PmVMR5eVXdJ8kPD6WeS/Nft7tkkaDpy7bqq+uEkH09yryTPqqoXdPdOgjQAAAAAYPXJSFcoI7UgDwAAAJi6z3b3NSOOd91ceydbLJw8fO5k64ad+IHMtlJIktd399eWHbC7v1RVv5Xkn2RW70OT/N6y4wIAAAAAK0FGuo2jmZFakAcAAADcpoZj1e1ljd19U1V9PskpSU7fso6qe2YtbLp6pBKeNtfeyVYMO/XRufZpI44LAAAAAMcMGamMdFnH7dXAAAAAABN2xfD5wKra6geNZ2xwz65V1Tck+b7h9P/t7j9Zdsz54UccCwAAAAA4tslId8mCPAAAAIA7+sDweXKSh2zR75y59gdHeO5Ts7ajwZi//EySb5lrf2bksQEAAACAY4uMdJcsyAMAAAC4o4vn2k/fqENVHZe1rROuTfLeEZ57ZLxbk/ynEcZLklTVPZI8aTi9McnlY40NAAAAAByTLp5ry0gXYEEeAAAAsKYndOyh7v5wkvcPp8+sqrM36PaTSc4c2q/o7q/OX6yq86uqh+OF2z2zqr41yYOH03d091/upNaqemxVnbjF9bsleUOSew1fvaa7b97J2AAAAABw4Ox37ikjnXxGutX+vgAAAAAH2Y9ntsXCiUneVVUvyewXnicmeXKSZw39rkzy8hGe9w/n2r+2wH0vSPL6qnpTZttIfDzJ9Um+LsnZSZ6d5D5D3z9N8sJlCwUAAAAADgQZ6S5YkAcAAACwge7+SFU9KclvJLl7kpds0O3KJOd293XLPGvY2uGpw+kXk7xtwSH+WpILhmMz/y3JU7v7C4tXCAAAAAAcNDLS3bEgDwAAAFjTSe3xVgejOEo1dvdbq+rbM/sl6LlJTk9yS5Krkrwxyau6+8YRHvU9SU4b2v95we0Sfmq4/+wkD0pySma//LwxyWeS/EGS30zyru6ewt9dAAAAANg/MtLbP0ZGujAL8gAAAAC20N1/nuR5w7HIfRcluWiHfd+dpBatbbj38iSX7+ZeAAAAAIDtyEgXc9x+FwAAAAAAAAAAAADHAgvyAAAAAAAAAAAAYAS2rAUAAADW9HCsuinUCAAAAABMj4yUJXlDHgAAAAAAAAAAAIzAgjwAAAAAAAAAAAAYgQV5AAAAAAAAAAAAMIJD+10AAAAAsGJ6vwsAAAAAANhHMlKW4A15AAAAAAAAAAAAMAIL8gAAAAAAAAAAAGAEtqwFAAAAblM9O1bdFGoEAAAAAKZHRsqyvCEPAAAAAAAAAAAARmBBHgAAAAAAAAAAAIzAgjwAAAAAAAAAAAAYwaH9LgAAAABYIT0cq24KNQIAAAAA0yMjZUnekAcAAAAAAAAAAAAjsCAPAAAAAAAAAAAARmDLWgAAAOA21bNj1U2hRgAAAABgemSkLMsb8gAAAAAAAAAAAGAEFuQBAAAAAAAAAADACCzIAwAAAAAAAAAAgBEc2u8CAAAAgBXSw7HqplAjAAAAADA9MlKW5A15AAAAAAAAAAAAMAIL8gAAAAAAAAAAAGAEtqwFAAAAblM9O1bdFGoEAAAAAKZHRsqyvCEPAAAAAAAAAAAARmBBHgAAAAAAAAAAAIzAgjwAAAAAAAAAAAAYwZ4uyKuq76yqn66qd1TV1VV1c1VdX1VXVtVFVfXIBcd7bFW9qaquGca6Zjh/7F79NQAAAMCB0hM6ACZARgoAAAATs9+5p4x08g7t1cBVdWmSR21w6fgkf2M4/mFV/XqSC7r7li3GqiS/kuRZ6y6dluQHk/xgVf2HJD/W3aYbAAAAALDvZKQAAAAAB89eviHvtOHzM0lekeSJSR6W5Owkz0vy6eH6P0hy0TZj/cusBU0fSfKUYaynDOcZrv/8CHUDAAAAAIxBRgoAAABwwOzZG/KSfCzJTyf5ne7+2rprvz/86vODSf63JE+pqn/f3e9fP0hVPTDJPxtOL0/yqO7+ynB+WVW9JcmlSR6a5PlV9dru/vge/PUAAADAsW8qWx1MoUYAGSkAAABMj4yUJe3ZG/K6+/Hd/YYNgqYj1z+f5CfnvnriJkP9RNYWDj5nLmg6Ms6NSZ4znB5K8txdFw0AAAAAMBIZKQAAAMDBs5db1u7E++baD1h/saoqyQ8Mpx/r7t/faJDh+z8dTs8b7gMAAAAAWHXvm2vLSAEAAAAmbr8X5B0/1z68wfX7JzltaF+6zVhHrp+e5H7LlQUAAAAAcFTISAEAAACOIYe277Knzplrf2yD62ducz2bXD8zySd3WxQAAAAcVNWzY9VNoUaAHZKRAgAAwAqRkbKsfVuQV1XHJXnB3Fdv2KDbfeba12wz5NWb3LeTWk7fpsupi4wHAAAAALCdVclI5aMAAAAA49nPN+T9RJKHDe03d/flG/S521z7+m3Gu2GufdcFa7l6+y4AAAAAAKNalYxUPgoAAAAwkn1ZkFdV5yT5peH0L5I8e5OuJ8y1b9lm2Jvn2ifusjQAAADAVgcAe05GCgAAACtMRsoSjvqCvKr61iRvHp59c5If7u7PbdL9prn28dsMfZe59lcWLGu77RtOTXLZgmMCAAAAANzBCmak8lEAAACAkRzVBXlVdf8k70pyzyRfS/KU7r50i1uum2tvt8XCyXPt7bZuuJ3uvmar61W1yHAAAAAAABtaxYxUPgoAAAAwnuOO1oOq6huT/Nck35jZix2f0d1v3ua2+SDo9G36zv+K8+rFKwQAAAAA2DsyUgAAAIBj31F5Q15VnZLk3Um+efjqOd39uh3c+tG59hnb9J2/fsUC5QEAAACD6k5173cZ25pCjQDzZKQAAAAwDTJSlrXnb8irqnskeWeSbxm+ekF3/9sd3v7JJJ8Z2uds0/dRw+enk3xqkRoBAAAAAPaKjBQAAADg4NjTBXlVdVKStyf5zuGrX+juX97p/d3dSS4ZTs+oqodv8pyHZ+3Xn5cM9wEAAAAA7CsZKQAAAMDBsmcL8qrq+CRvTvJdw1ev6O6f3cVQFya5dWi/sqpOXPecE5O8cji9degPAAAA7EZP6ABYcTJSAAAAmKD9zj1lpJN3aA/H/s0kjxna70nymqr6m1v0v6W7r1z/ZXdfWVUvS/KCJA9N8sGq+uUkH0/ygCTPT/Lgofu/6u4/G+svAAAAAABgCTJSAAAAgANmLxfkPWGu/beT/I9t+v95kvttcu1nknxDkmdkFiz91gZ9XpNkN78uBQAAAADYCzJSAAAAgANmz7asHVN3H+7uZyY5N8klST6T5Jbh85Ikj+vuC7r78D6WCQAAAACwJ2SkAAAAANOwZ2/I6+7agzF/N8nvjj0uAAAAMFM9O1bdFGoEkJECAADA9MhIWdYk3pAHAAAAAAAAAAAAq86CPAAAAAAAAAAAABiBBXkAAAAAAAAAAAAwgkP7XQAAAACwQno4Vt0UagQAAAAApkdGypK8IQ8AAAAAAAAAAABGYEEeAAAAAAAAAAAAjMCWtQAAAMBtqmfHqptCjQAAAADA9MhIWZY35AEAAAAAAAAAAMAILMgDAAAAAAAAAACAEViQBwAAAAAAAAAAACM4tN8FAAAAACukh2PVTaFGAAAAAGB6ZKQsyRvyAAAAAAAAAAAAYAQW5AEAAAAAAAAAAMAIbFkLAAAA3KZ6dqy6KdQIAAAAAEyPjJRleUMeAAAAAAAAAAAAjMCCPAAAAAAAAAAAABiBBXkAAAAAAAAAAAAwgkP7XQAAAACwQno4Vt0UagQAAAAApkdGypK8IQ8AAAAAAAAAAABGYEEeAAAAAAAAAAAAjMCWtQAAAMDtlK0OAAAAAIADTEbKMrwhDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACMwII8AAAAAAAAAAAAGMGh/S4AAAAAWCHds2PVTaFGAAAAAGB6ZKQsyRvyAAAAAAAAAAAAYAQW5AEAAAAAAAAAAMAIbFkLAAAA3KZ6dqy6KdQIAAAAAEyPjJRleUMeAAAAAAAAAAAAjMCCPAAAAAAAAAAAABiBBXkAAAAAAAAAAAAwgkP7XQAAAACwQno4Vt0UagQAAAAApkdGypK8IQ8AAAAAAAAAAABGYEEeAAAAAAAAAAAAjMCWtQAAAMBt6vDsWHVTqBEAAAAAmB4ZKcvyhjwAAAAAAAAAAAAYgQV5AAAAAAAAAAAAMAIL8gAAAAAAAAAAAGAEh/a7AAAAAGCF9HCsuinUCAAAAABMj4yUJXlDHgAAAAAAAAAAAIzAgjwAAAAAAAAAAAAYgS1rAQAAgNtUz45VN4UaAQAAAIDpkZGyLG/IAwAAANhCVd23ql5WVVdU1Q1V9YWq+nBV/VRVnbTk2C+sqt7h8egdjHevqnpRVf1RVX2pqr48tF9UVfdaplYAAAAA4GCSkS7GG/IAAAAANlFV5yZ5fZJ7zH19UpKzhuOCqnpcd39iP+qbV1VnJbkkyV9fd+nbh+OCqvqB7r78qBcHAAAAAEySjHRxFuQBAAAAbKCqviPJGzILl65P8otJ3pvkxCRPTvKjSR6U5O1VdVZ3X7/kI79tm+uf3KLW05K8Ncm9k9ya5P9K8rbh8uOTPC/JNyZ5W1U9pLs/vWStAAAAAMAxTka6OxbkAQAAAGu6Z8eqOzo1XphZ0HRrksd094fmrr2nqv4syUuTnJFZmPPiZR7W3X+yxO2/kFnQlCRP7e43zl17f1Vdnllwdu8kP5/kGUs8CwAAAACOXTLSeRdGRrqw4/ZqYAAAAICpGrY2ePRw+pp1QdMRL09yxdB+blXd+WjUtl5V3TvJjwyn71wXNCVJhu/eOZw+bbgHAAAAAGBDMtLdsyAPAAAA4I7Om2u/dqMO3X04yeuG03tmLZw62v5ekjsN7Q1rHVw0fN5puAcAAAAAYDPnzbVlpAuwIA8AAADgjh45fN6Q5A+36HfpXPsRe1fOlh451750016rUSsAAAAAMA0y0l06tFcDAwAAANNTPTtW3VGo8czh86ruvnWLfh/b4J5dqap3J/nOJHdLcm2Sjyb5L0le3d1f3OLWI8/9Und/drNO3f2/qurLSe6+bK0AAAAAcKySkd5GRrpLFuQBAAAAU3dqVW3Zobuv2elgVXVCklOG0y3v6+4vVtUNSU5Ocp+dPmMT3zvX/vok5wzH86vq/O6+ZJP7jjx3J3+NVyf51ixfKwAAAACwOmSkO6h1sOcZqQV5AAAAwNRdtoM+W6dRt3e3ufb1O+h/JGy66wLPmPfHSS5O8uEkn0ly5yQPSvL3kzwmydcl+Z2q+v7ufscW9e601ixRKwAAAACwemSki9WaJWrdlgV5AAAAwO1NYDuGPXbCXPuWHfS/efg8cRfPurC7X7jB93+Q5HVV9Y+S/EqSOyX51ap6YHd/ZV3fI/Xuda0AAAAAcDDISGWkS7AgDwAAAJi6s5J8dsTxbpprH7+D/ncZPteHQNvq7mu3uf7qqnpokguSfGOSJyR5/bpuNyU5KXtcKwAAAACwsmSkK5SRWpAHAAAATN1nu/uaEce7bq69k20LTh4+d7Idwm68OrOwKUnOyR3DpusyC5tWoVYAAAAA4OiTka5QRnrcXg0MAAAAMEXdfVOSzw+np2/Vt6rumbUA5+o9Kumjc+3TNrh+JGjbstbBfYbPvaoVAAAAAJg4GelyLMgDAAAAblM9nWOPXTF8PrCqttph4IwN7hlbbXP9SBh1j6o6ddNBqv56krsPp3tVKwAAAABM2n7nnjLSDU0qI7UgDwAAAOCOPjB8npzkIVv0O2eu/cE9quVb5tqf2eD6B+ba52xwfaNre1UrAAAAAHBskJHukgV5AAAAAHd08Vz76Rt1qKrjkjxtOL02yXv3qJZ/NNe+dIPrb0lyeGhvWOvg/OHz8HAPAAAAAMBmLp5ry0gXYEEeAAAAsKZ7Osee/p+hP5zk/cPpM6vq7A26/WSSM4f2K7r7q/MXq+r8qurheOH6m6vq26rqgVvVUVX/KMkzh9PPJnnzBrV+Nsnrh9Pvq6onbjDODyX5vuH014d7AAAAAID19jv3lJGu7zO5jHSr/X0BAAAADrIfz2zbghOTvKuqXpLZLzxPTPLkJM8a+l2Z5OW7GP8hSX61qt6b5B1J/jjJX2WW15yR5EeS/J2h79eS/KPuvmGTsX4myWOTfH2S36yqhyZ523Dt8ZkFY0nyl0l+dhe1AgAAAAAHj4x0FyzIAwAAANhAd3+kqp6U5DeS3D3JSzbodmWSc7v7ul0+5k5Jvnc4NvNXSZ7Z3ZtuodDdV1fV92e2jcSpSZ4/HPM+m+S87r5ml7UCAAAAAAeIjHR3LMgDAAAA2ER3v7Wqvj2zX4Kem+T0JLckuSrJG5O8qrtv3OXwv5vZVgtnJ3lwknsnuVeSSvKFJH+U5L8kuai7v7yDWv+gqr5tqPW8JPcbLn0yySVJLuzuv9plrQAAAADAASQjXZwFeQAAAMBtqmfHqjuaNXb3nyd53nAsct9FSS7a4vpfJPm/h2MU3f35JP9iOAAAAACABclI70hGupjj9uvBAAAAAAAAAAAAcCyxIA8AAAAAAAAAAABGYMtaAAAAYE0Px6qbQo0AAAAAwPTISFmSN+QBAAAAAAAAAADACCzIAwAAAAAAAAAAgBFYkAcAAAAAAAAAAAAjOLTfBQAAAACro3p2rLop1AgAAAAATI+MlGV5Qx4AAAAAAAAAAACMwII8AAAAAAAAAAAAGIEtawEAAIA1h3t2rLop1AgAAAAATI+MlCV5Qx4AAAAAAAAAAACMwII8AAAAAAAAAAAAGIEFeQAAAAAAAAAAADCCQ/tdAAAAALBCejhW3RRqBAAAAACmR0bKkrwhDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACMwJa1AAAAwG0qSU1gq4Pa7wIAAAAAgGOSjJRleUMeAAAAAAAAAAAAjMCCPAAAAAAAAAAAABiBBXkAAAAAAAAAAAAwgkP7XQAAAACwQjpJ935Xsb0JlAgAAAAATJCMlCV5Qx4AAAAAAAAAAACMwII8AAAAAAAAAAAAGIEtawEAAIA1ndQUtjqYQo0AAAAAwPTISFmSN+QBAAAAAAAAAADACCzIAwAAAAAAAAAAgBFYkAcAAAAAAAAAAAAjOLTfBQAAAAArpIdj1U2hRgAAAABgemSkLMkb8gAAAAAAAAAAAGAEFuQBAAAAAAAAAADACCzIAwAAAAAAAAAAgBEc2u8CAAAAgNVR3anu/S5jW1OoEQAAAACYHhkpy/KGPAAAAAAAAAAAABiBBXkAAAAAAAAAAAAwAlvWAgAAAGsOD8eqm0KNAAAAAMD0yEhZkjfkAQAAAAAAAAAAwAgsyAMAAAAAAAAAAIARWJAHAAAAAAAAAAAAIzi03wUAAAAAq6O6U937Xca2plAjAAAAADA9MlKW5Q15AAAAAAAAAAAAMAIL8gAAAAAAAAAAAGAEtqwFAAAA1vRwrLop1AgAAAAATI+MlCV5Qx4AAAAAAAAAAACMwII8AAAAAAAAAAAAGIEFeQAAAAAAAAAAADCCQ/tdAAAAALBKOune7yJ2YAo1AgAAAADTIyNlOd6QBwAAAAAAAAAAACOwIA8AAAAAAAAAAABGYMtaAAAA4DbVs2PVTaFGAAAAAGB6ZKQsyxvyAAAAAAAAAAAAYAQW5AEAAAAAAAAAAMAILMgDAAAAAAAAAACAERza7wIAAACAFdI9O1bdFGoEAAAAAKZHRsqSvCEPAAAAAAAAAAAARmBBHgAAAAAAAAAAAIzAlrUAAADAberw7Fh1U6gRAAAAAJgeGSnL2tM35FXVN1TV46vqxVX1jqr6fFX1cFy0i/EeW1Vvqqprqurm4fNNVfXYPSgfAAAAAGApMlIAAACAg2Wv35D3uTEGqapK8itJnrXu0mlJfjDJD1bVf0jyY93dYzwTAAAAAGAEMlIAAACAA2RP35C3ztVJ3rXLe/9l1oKmjyR5SpKHDZ8fGb5/VpKfX6ZAAAAAAIA9JCMFAAAAOMbt9RvyXpzksiSXdffnqup+ST65yABV9cAk/2w4vTzJo7r7K8P5ZVX1liSXJnlokudX1Wu7++OjVA8AAAAHTffsWHVTqBFgRkYKAAAAUyIjZUl7+oa87v657n5bdy+zLcNPZG3h4HPmgqYjz7gxyXOG00NJnrvEswAAAAAARiMjBQAAADhYjuaWtQurqkryA8Ppx7r79zfqN3z/p8PpecN9AAAAAACTJiMFAAAAmJaVXpCX5P5JThval27T98j105Pcb68KAgAAgGNaT+gAOBhkpAAAAHA07XfuKSOdvFVfkHfmXPtj2/Sdv37mpr0AAAAAAKZDRgoAAAAwIYf2u4Bt3Geufc02fa/e5L5tVdXp23Q5dZHxAAAAAABGsucZqXwUAAAAYDyrviDvbnPt67fpe8Nc+64LPufq7bsAAAAAABx1RyMjlY8CAAAAjGTVF+SdMNe+ZZu+N8+1T9yDWgAAAOCYV92p7v0uY1tTqBFgJDJSAAAAOIpkpCxr1Rfk3TTXPn6bvneZa39lwedst33DqUkuW3BMAAAAAIBlHY2MVD4KAAAAMJJVX5B33Vx7uy0WTp5rb7d1w+109zVbXa+qRYYDAAAAABjLnmek8lEAAACA8az6grz5IOj0bfrO/4rz6j2oBQAAAI593bNj1U2hRoBxyEgBAADgaJKRsqTj9ruAbXx0rn3GNn3nr1+xB7UAAAAAABxtMlIAAACACVn1BXmfTPKZoX3ONn0fNXx+Osmn9qogAAAAAICjSEYKAAAAMCErvSCvuzvJJcPpGVX18I36Dd8f+fXnJcN9AAAAAACTJiMFAAAAmJaVXpA3uDDJrUP7lVV14vzF4fyVw+mtQ38AAABgNzrJ4QkclpkAB8uFkZECAADA0SEjZUmH9nLwqnpEkgfOfXXKXPuBVXX+fP/uvmj9GN19ZVW9LMkLkjw0yQer6peTfDzJA5I8P8mDh+7/qrv/bLS/AAAAAACAJchIAQAAAA6WPV2Ql+SCJP9wk2vfNRzzLtqk788k+YYkz8gsWPqtDfq8JsnPLl4iAAAAAMCekZECAAAAHCBT2LI23X24u5+Z5NwklyT5TJJbhs9Lkjyuuy/o7sP7WCYAAAAAwJ6QkQIAAABMw56+Ia+7z09y/ojj/W6S3x1rPAAAAOD2qjvVvd9lbGsKNQIkMlIAAACYGhkpy5rEG/IAAAAAAAAAAABg1VmQBwAAAAAAAAAAACPY0y1rAQAAgInpJFPY6mACJQIAAAAAEyQjZUnekAcAAAAAAAAAAAAjsCAPAAAAAAAAAAAARmBBHgAAAAAAAAAAAIzg0H4XAAAAAKyQ7tmx6qZQIwAAAAAwPTJSluQNeQAAAAAAAAAAADACC/IAAAAAAAAAAABgBLasBQAAANYcHo5VN4UaAQAAAIDpkZGyJG/IAwAAAAAAAAAAgBFYkAcAAAAAAAAAAAAjsCAPAAAAAAAAAAAARnBovwsAAAAAVkd1p7r3u4xtHc0aq+q+Sf7PJOcmuW+Sm5NcleQNSf5dd9+4xNh3T/K4JN+T5CFJvjnJSUm+lOR/Jnlbkl/t7mu3GedTSb5pB4/88+6+327rBQAAAIBjnYx0g2fJSBdiQR4AAADAJqrq3CSvT3KPua9PSnLWcFxQVY/r7k/sYuy/m+TNSe6yweVTkpwzHD9VVU/p7vcu+gwAAAAAgGXISBdnQR4AAADABqrqOzL7hedJSa5P8otJ3pvkxCRPTvKjSR6U5O1VdVZ3X7/gI+6VWdB0OMm7k/yXJH+U5Nokpyf5+0melOTeSd5WVd/V3f99mzEvSfKzW1y/ZcEaAQAAAIADSka6OxbkAQAAAGu6Z8eqOzo1XphZ0HRrksd094fmrr2nqv4syUuTnJHkeUlevOD4X03y6iQv6e7/b921jyR5a1V9MMm/Gep4eWbbNmzl2u7+kwXrAAAAAACOkJHOuzAy0oUdt58PBwAAAFhFVXVWkkcPp69ZFzQd8fIkVwzt51bVnRd5Rnf/5+7+sQ2Cpvk+r0xy+XD66Kq61yLPAAAAAADYDRnp7lmQBwAAAHBH5821X7tRh+4+nOR1w+k9sxZOje19w+dxSe6/R88AAAAAAJh33lxbRroAC/IAAAAA7uiRw+cNSf5wi36XzrUfsUe13GWufXiPngEAAAAAME9GukuH9rsAAAAAYJV00r3fRezAntd45vB5VXffukW/j21wz9jOGT5vTXLVNn0fVVX/I8kDklSSzyX5cJLfTHJJ9yT+5gIAAADAPpKRDmSku2RBHgAAADB1p1bVlh26+5qdDlZVJyQ5ZTjd8r7u/mJV3ZDk5CT32ekzFqjl3CTfPpy+s7u/vM0t67druN9w/HCSD1bVk7r706MWCQAAAADsNxnpmn3PSC3IAwAAAKbush302TqNur27zbWv30H/I2HTXRd4xraq6q8l+bfD6deS/Istut+S5C1J3pXkT5J8KcnXJTk7ybMzC8K+K8m7q+rs7v7SmLUCAAAAAPtKRrpCGakFeQAAAMCansh2DHtb4wlz7Vt20P/m4fPEsQqoqjsleX2Sbxq++pfd/ZEtbnlYd1+7wffvq6pXJfntJI/JbMuIn0vyvLFqBQAAAIBjiow0kZEuxYI8AAAAYOrOSvLZEce7aa59/A7632X4/MqINfy7JI8d2m9P8vNbdd4kaDpy7bqq+uEkH09yryTPqqoXdPdOgjQAAAAAYPXJSFcoI7UgDwAAAJi6z3b3NSOOd91ceydbLJw8fO5k64ZtVdUvJnnWcPqBJD/U3V9bZszu/lJV/VaSf5JZvQ9N8ntLFQoAAAAArAoZ6TaOZkZ63F4MCgAAADBV3X1Tks8Pp6dv1beq7pm1sOnqZZ9dVc9P8oLh9P9N8vjuHutXpR+da5820pgAAAAAwDFGRrocb8gDAAAA1hwejlW39zVekeSRSR5YVYe6+9ZN+p2x7p5dq6p/nOSX5sb6vu7+0jJjrn/EiGMBAAAAwLFJRnqEjHSXvCEPAAAA4I4+MHyenOQhW/Q7Z679wd0+rKr+QZJXDaefSPK93f35LW7ZjW+Za39m5LEBAAAAgGOLjHSXLMgDAAAAuKOL59pP36hDVR2X5GnD6bVJ3rubB1XVE5K8NrNfZ16T5Hu6e9QwqKrukeRJw+mNSS4fc3wAAAAA4Jhz8VxbRroAC/IAAACA21T3ZI691N0fTvL+4fSZVXX2Bt1+MsmZQ/sV3f3V+YtVdX5V9XC8cKPnVNVjkvxmkjsl+YvMfvX5qUVqrarHVtWJW1y/W5I3JLnX8NVruvvmRZ4BAAAAAAfFfueeMtLpZ6SH9mpgAAAAgIn78cy2WDgxybuq6iWZ/cLzxCRPTvKsod+VSV6+6OBV9fAkb05yfJKvJvmJJHeuqr+5xW3XdPe16757QZLXV9WbMttG4uNJrk/ydUnOTvLsJPcZ+v5pkhcuWisAAAAAcCDJSHfBgjwAAACADXT3R6rqSUl+I8ndk7xkg25XJjm3u6/bxSMem+SkoX3nJK/fwT1PT3LRBt//tSQXDMdm/luSp3b3FxaoEQAAAAA4oGSku2NBHgAAAMAmuvutVfXtmf0S9Nwkpye5JclVSd6Y5FXdfeM+lpgkP5XkezL7peeDkpyS2S8/b0zymSR/kNmWD+/q3uN9LAAAAACAY4qMdHEW5AEAAABrumfHqjuKNXb3nyd53nAsct9F2fiXmkeuvzAjbI3Q3ZcnuXzZcQAAAACAyEg3fJSMdBHH7XcBAAAAAAAAAAAAcCywIA8AAAAAAAAAAABGYMtaAAAAYM3hnh2rbgo1AgAAAADTIyNlSd6QBwAAAAAAAAAAACOwIA8AAAAAAAAAAABGYEEeAAAAAAAAAAAAjODQfhcAAAAArJBO0r3fVWxvAiUCAAAAABMkI2VJ3pAHAAAAAAAAAAAAI7AgDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACM4NB+FwAAAACskk6697uIHZhCjQAAAADA9MhIWY435AEAAAAAAAAAAMAILMgDAAAAAAAAAACAEdiyFgAAAFjTE9mOYQo1AgAAAADTIyNlSd6QBwAAAAAAAAAAACOwIA8AAAAAAAAAAABGYEEeAAAAAAAAAAAAjODQfhcAAAAArJDDPTtW3RRqBAAAAACmR0bKkrwhDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACMwJa1AAAAwJo+PDtW3RRqBAAAAACmR0bKkrwhDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACMwII8AAAAAAAAAAAAGMGh/S4AAAAAWCHds2PVTaFGAAAAAGB6ZKQsyRvyAAAAAAAAAAAAYAQW5AEAAAAAAAAAAMAIbFkLAAAArDncs2PVTaFGAAAAAGB6ZKQsyRvyAAAAAAAAAAAAYAQW5AEAAAAAAAAAAMAILMgDAAAAAAAAAACAERza7wIAAACAFdI9O1bdFGoEAAAAAKZHRsqSvCEPAAAAAAAAAAAARmBBHgAAAAAAAAAAAIzAlrUAAADA7dnqAAAAAAA4yGSkLMEb8gAAAAAAAAAAAGAEFuQBAAAAAAAAAADACCzIAwAAAAAAAAAAgBEc2u8CAAAAgBXSPTtW3RRqBAAAAACmR0bKkrwhDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACMwJa1AAAAwJrDh5M6vN9VbO/wBGoEAAAAAKZHRsqSvCEPAAAAAAAAAAAARmBBHgAAAAAAAAAAAIzAgjwAAAAAAAAAAAAYwaH9LgAAAABYId2zY9VNoUYAAAAAYHpkpCzJG/IAAAAAAAAAAABgBBbkAQAAAAAAAAAAwAhsWQsAAACssR0DAAAAAHCQyUhZkjfkAQAAAAAAAAAAwAgsyAMAAAAAAAAAAIARWJAHAAAAAAAAAAAAIzi03wUAAAAAK+RwJ9X7XcX2Dk+gRgAAAABgemSkLMkb8gAAAAAAAAAAAGAEFuQBAAAAAAAAAADACCzIAwAAAAAAAAAAgBEc2u8CAAAAgNXRfTjdh/e7jG1NoUYAAAAAYHpkpCzLG/IAAAAAAAAAAABgBBbkAQAAAAAAAAAAwAhsWQsAAACs6SSHe7+r2N4ESgQAAAAAJkhGypK8IQ8AAAAAAAAAAABGYEEeAAAAAAAAAAAAjMCCPAAAAAAAAAAAABjBof0uAAAAAFgh3bNj1U2hRgAAAABgemSkLMkb8gAAAAAAAAAAAGAEFuQBAAAAAAAAAADACGxZCwAAAKw5fDjJ4f2uYnuHJ1AjAAAAADA9MlKW5A15AAAAAAAAAAAAMAIL8gAAAAAAAAAAAGAEFuQBAAAAAAAAAADACA7tdwEAAADACumeHatuCjUCAAAAANMjI2VJ3pAHAAAAAAAAAAAAI7AgDwAAAAAAAAAAAEZgy1oAAADgNn34cDqH97uMbfXh1a8RAAAAAJgeGSnL8oY8AAAAAAAAAAAAGIEFeQAAAAAAAAAAADACC/IAAAAAAAAAAABgBIf2uwAAAABghXTPjlU3hRoBAAAAgOmRkbIkb8gDAAAAAAAAAACAEViQBwAAAAAAAAAAACOwZS0AAACwpjs5PIGtDmzHAAAAAADsBRkpS/KGPAAAAAAAAAAAABiBBXkAAAAAAAAAAAAwAgvyAAAAAAAAAAAAYASH9rsAAAAAYIV0Jzm831Vsr3u/KwAAAAAAjkUyUpY0uTfkVdV9q+plVXVFVd1QVV+oqg9X1U9V1Un7XR8AAAAAwF6RjwIAAACstkm9Ia+qzk3y+iT3mPv6pCRnDccFVfW47v7EftQHAAAAALBX5KMAAAAAq28yC/Kq6juSvCGzgOn6JL+Y5L1JTkzy5CQ/muRBSd5eVWd19/X7VSsAAABMVR/udK3+VgdtOwbggJGPAgAAwNEhI2VZk1mQl+TCzMKmW5M8prs/NHftPVX1Z0lemuSMJM9L8uKjXiEAAAAAwN64MPJRAAAAgJV33H4XsBNVdVaSRw+nr1kXNh3x8iRXDO3nVtWdj0ZtAAAAAAB7ST4KAAAAMB2TWJCX5Ly59ms36tDdh5O8bji9Z9YCKgAAAACAKTtvri0fBQAAAFhhU9my9pHD5w1J/nCLfpfOtR+R5N17VhEAAAAci/pwksP7XcX2egI1AoxHPgoAAABHi4yUJU3lDXlnDp9XdfetW/T72Ab3bKuqTt/qSHLqbooGAAAApq+q7ltVL6uqK6rqhqr6QlV9uKp+qqpOGvE5T66qd1bV/6qqm6rqU1X161X18AXGuFdVvaiq/qiqvlRVXx7aL6qqe41VK3DUyUcBAACAfSMjXczKvyGvqk5Icspwes1Wfbv7i1V1Q5KTk9xngcdcvcvyAAAAgGNYVZ2b5PVJ7jH39UlJzhqOC6rqcd39iSWecUKSNyZ5/LpL3zQcT62qF3b3z28zzllJLkny19dd+vbhuKCqfqC7L99trcDRJx8FAAAA9pOMdHFTeEPe3eba1++g/w3D5133oBYAAAA4pvXhnsyx16rqO5K8IbOg6fokP5PkbyX5niT/cej2oCRvr6plcojXZC1oem+S85I8LMkzk3w8s/zmxVV1wRa1npbkrZkFTbcmeWmSRw3HS4fvvjHJ24a+wHTIRwEAAOAo2u/cU0Y6/Yx05d+Ql+SEufYtO+h/8/B54gLP2O7XoqcmuWyB8QAAAIDpuzCzX3remuQx3f2huWvvqao/yyzIOSPJ85K8eNEHVNU5SZ46nL41yQ9299eG88uq6i1J/jDJfZO8tKp+u7uv3WCoX0hy76H91O5+49y191fV5ZkFZ/dO8vNJnrForcC+kY8CAAAA++XCyEgXNoU35N001z5+B/3vMnx+ZacP6O5rtjqSfHaRggEAAIBpG7Y2ePRw+pp1QdMRL09yxdB+blXdeReP+mfD59eS/OO5oClJ0t2fT/L84fSemf0idH2t907yI8PpO9cFTUfGeWOSdw6nTxvuAaZBPgoAAAAcdTLS3ZvCgrzr5to7ebXhycPnTrZvAAAAANjIeXPt127UobsPJ3ndcHrPrIVTOzJs4fA9w+m7h0UvG3lTki8P7SdscP3vJbnTVrUOLho+7zTcA0yDfBQAAADYD+fNtWWkC1j5BXndfVOSzw+np2/Vt6rumbXA6eq9rAsAAACOSX14OsfeeuTweUNm2yFs5tK59iMWfMbDsvYmq0s369TdtyT5/SP3bPAr00fOtTcdJ8vVCuwT+SgAAAAcZfude8pI72BqGenKL8gbHHm14QOr6tAW/c7Y4B4AAACARZ05fF7V3bdu0e9jG9yz6DPWj7PVcw4l+RubjPOl7t50W8nu/l9Z+xXporUC+0s+CgAAABxtMtJd2iq8WSUfyGwl48lJHpLkDzbpd85c+4MjPv/IKw1z8+EbRxwWAACAKVj334J32qzfseDm3JT0flexvZtz0/zpqVW1Zf8ttjq4g6o6Ickpw+mW93X3F6vqhswyi/vs9BmD+f7b1Tf/pqv7JPnoBuPs5K/x6iTfmsVrBfbXyuSjt1735a36AQAAcAxa99+Cx3Q+mshIExnpsqayIO/iJP98aD89GwROVXVckqcNp9cmee+Iz//6I43f//IlIw4LAADABH19kj/f7yL2ymV5z36XsBuX7aDP1mnU7d1trn39DvofCZvuusAzFn3ODXPt9c85Ms5Oa91oDGC1XZwVyUev+ZVXjDgsAAAAE3RM56OJjHQgI13CJLas7e4PJ3n/cPrMqjp7g24/mbVXCb6iu796VIoDAAAAjjUnzLVv2UH/m4fPE/fwOTfPtdc/58g4e1krsI/kowAAAMBRJiNdwlTekJckP57ZNgsnJnlXVb0ks195npjkyUmeNfS7MsnLR372Hyc5a2j/ZZKvzV07NWurTM9Ksuk+xDAwZ1iUOcMizBcWZc6wKHOGRR0rc+ZOWXs70B/vZyF75LOZ7hamp+aO/62+rPm9Ho7fQf+7DJ9f2cPn3GWuvf45NyU5aQdjzI+zaK3A/pOPcqwwZ1iUOcOizBkWZc6wKHOGRR0Lc+ZYz0cTGel6MtIlTGZBXnd/pKqelOQ3ktw9yUs26HZlknO7+7qRn31zkss3urZu/+XPLrLfMgeTOcOizBkWYb6wKHOGRZkzLOoYmzPH7DYM3X1rkqn+vdmLuudzhZ1sW3Dy8LmT7RB2+5yT59rrn3NdZmHTXtYK7DP5KMcKc4ZFmTMsypxhUeYMizJnWNQxNGeO2Xw0kZFuQEa6hElsWXtEd781ybcn+deZhUs3Jrk2szDo+Uke3N1X7VuBAAAAwOR1901JPj+cnr5V36q6Z9YCnKsXfNR8ULblc3L7X+euf86RcbYbY36cRWsFVoB8FAAAADgaZKTLmcwb8o7o7j9P8rzhAAAAANgLVyR5ZJIHVtWh4ReyGzlj3T2L+Ogm42z1nFuTrF9s89EkD0lyj6o6tbs33Pakqv56Zm/V2k2twIqQjwIAAABHiYx0lyb1hjwAAACAo+QDw+fJmQU5mzlnrv3BBZ9xWZJbNhjndqrq+CQPP3JPd9+yrssH5tqbjpPlagUAAAAADhYZ6S5ZkAcAAABwRxfPtZ++UYeqOi7J04bTa5O8d5EHdPd1Sf6f4fR7q2qz7RSekLVfbb55g+tvSXJ4q1oH5w+fh4d7AAAAAAA2c/FcW0a6AAvyAAAAANbp7g8nef9w+syqOnuDbj+Z5Myh/Yru/ur8xao6v6p6OF64yaNeNnweSvJvq+pO68Y4JckvD6fXJvnVDWr9bJLXD6ffV1VPXN+nqn4oyfcNp7++2ZYNAAAAAACJjHQZFuQBAAAAbOzHk3wlsyDoXVX1z6vq4VX13VX16iQvHfpdmeTlu3lAd78nyW8Np38vybur6u9V1UOr6ulJfj/JfYfrL+juL24y1M8k+cuh/ZtV9UtV9Yjh+KUk/2m49pdJfnY3tQIAAAAAB46MdBcO7eXgAAAAAFPV3R+pqicl+Y3MtkN4yQbdrkxy7rC1wm49Yxj/cUm+ezjmHU7y89396i1qvbqqvj+zbSROTfL84Zj32STndfc1S9QKAAAAABwQMtLdqe7ey/EBAAAAJq2qvimzX4Kem+T0JLckuSrJG5O8qrtv3OS+85O8djh9UXe/cJvnPDXJ+Um+I8nXJflcZltCvKq7P7TDWk8Zaj0vyf2Grz+Z5JIkF3b3X+1kHAAAAACAI2Ski7EgDwAAAAAAAAAAAEZw3H4XAAAAAAAAAAAAAMcCC/IAAAAAAAAAAABgBBbkAQAAAAAAAAAAwAgsyAMAAAAAAAAAAIARWJAHAAAAAAAAAAAAI7AgDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACMwII8AAAAAAAAAAAAGIEFeUuoqvtW1cuq6oqquqGqvlBVH66qn6qqk/a7PvZeVX1DVT2+ql5cVe+oqs9XVQ/HRbsY77FV9aaquqaqbh4+31RVj92D8tkHVfWdVfXTw3y5evj7fH1VXVlVF1XVIxccz5w5hlXV3avqyVX18qq6tKquqqovVdUtVfUXVfW+qvpnVXWvHY5nvhxgVfXSuX9HdVU9egf3mDMHwLp5sdXxvh2MZc4cMFV1yvDvog9W1WeHv++fqao/qKp/VVVn72AM8wYAJkxGioyURclIWYSMlDHJSNmMjJTdko8Cm6nu3u8aJqmqzk3y+iT32KTLnyZ5XHd/4uhVxdFWVVv9P9Cvdff5OxynkvxKkmdt0e0/JPmx9v+0k1VVlyZ51A66/nqSC7r7li3GMmcOgKr63iTv3kHXzyf5ke5+5ybjmC8HXFV9R5LLkxya+/q7u/t9m/Q3Zw6Qbf48M+/S7n70JmOYMwdQVf1Qkn+fZKv/0eOS7j5vk/vNGwCYOBkpiYyUxchIWZSMlLHISNmKjJTdkI8CW/GGvF0Y/sD2hsyCpuuT/EySv5Xke5L8x6Hbg5K8varuui9Fsh+uTvKuXd77L7P2L9qPJHlKkocNnx8Zvn9Wkp9fpkD23WnD52eSvCLJEzP7+3x2kucl+fRw/R8kuWibscyZg+PqJK9L8uNJnpDZfPmuJE9K8sYkX0tySpK3VNW3bzKG+XKAVdVxmf355FCSv9jhbebMwfTvk3zbFsfTt7jXnDlgquppSX4rs7DpL5K8KMnfSfKQJOcm+T8z+x9MvrrFMOYNAEyYjJRNyEjZjoyU3ZCRshQZKQuQkbIj8lFgO96QtwtV9d4kj05ya5JHdfeH1l3/p0leOpz+XHe/+OhWyNFSVS9KclmSy7r7c1V1vySfHC7v6NefVfXAJFdk9h8Bl2c2p74yd/2kJJcmeWhmc+6M7v74mH8dHB1V9bbMQoPf6e6vbXD9lCQfTPK/DV89qrvfv0E/c+aAqKo7bTRX1vU5L8mbh9M3dff/se66+XLAVdVzk/zrJB/LbK788+HShr/+NGcOnrlff76ou1+4i/vNmQOmqs7MLBC6S5L3J/n+7v7SJn2P3+iNFuYNAEyfjJQjZKQsQkbKomSkjEFGynZkpCxCPgrshDfkLaiqzsosaEqS16wPmgYvz+wfnkny3Kq689GojaOvu3+uu9/W3Z9bYpifyNrrsZ8z/y/a4Rk3JnnOcHooyXOXeBb7qLsf391v2Cw86O7PJ/nJua+euMlQ5swBsV3QNPS5OLMQIdl4uw/z5QCrqvtk7ZdTz06y6TYvc8wZFmXOHDyvzCxs+nySJ2wWNiXJFttLmTcAMGEyUubJSFmEjJRFyUhZloyUo8ScOVjko8C2LMhb3Hlz7ddu1KG7D2f2C68kuWfWwim4nWFf+B8YTj/W3b+/Ub/h+z8dTs8b7uPY9L659gPWXzRn2MQNw+cJ81+aLyT5d0numtkbCd63XWdzhkWZMwdPVZ2R2TZ0SfKq4X8sW3QM8wYApu+8ubaMlKX48yEbeN9cW0bKTslI2YyMlD1lzhws8lFgpyzIW9wjh88bkvzhFv0unWs/Yu/KYeLun+S0oX3pVh3nrp+e5H57VRD77vi59uENrpsz3M7wWuz/fTj92LrL5ssBVlU/nOTxSb6Q5J/u8DZzhkWZMwfPD82133ikUVX3rKq/UVX32sEY5g0ATJ+MlDH58yHryUhZiIyUzchIOUrMmYNFPgrsiAV5iztz+Lyqu2/dot/8H/jP3LQXB9383Fj/H4nrmVMHwzlz7Y3mhDlDquqk4Q/1z0vy3iR3Gi69Yl1X8+WAqqqvy9p8eH53/+UObzVnDrYfqqo/raqvVNV1VfVnVfVrVfXdW9xjzhw8Dx8+v5Tkiqr6+1X1R5kF21cm+XxVfaKqfq6q7rrJGOYNAEyfjJQx+fMh68lI2ZaMlO3ISNklGSnbkY8CO3Jo+y4cUVUnJDllOL1mq77d/cWquiHJyUnus9e1MVnzc2PLOZXk6k3u4xhRVcclecHcV2/YoJs5c0BV1fnZZBugwcuSvH7dd+bLwfXSJKcm+b0kr1ngPnPmYPuWdecPHI6nVdXFSc7v7i+t62POHDxH5smnkrwyyT/ZoM/9k7wwyROr6vu6+zPrrps3ADBhMlL2gD8fchsZKVuRkbIgGSm7ISNlO/JRYEe8IW8xd5trX7+D/jcMn5utfIZF5tQNc21z6tj0E0keNrTf3N2Xb9DHnGG9/57k4d39T7u7110zXw6gqnpEkguS3JrkxzaYF1sxZw6mG5P8VpIfzWzrsQcneUySX0jyV0Of85JcUlV3XnevOXPw/LXh84zMwqZrk/xYkm9IckKSs5K8Y+jzN5O8cfgf1OaZNwAwbTJSxubPh8yTkbIb/z0yUubISNkFGSk7JR8FdsQb8hZzwlz7lh30v3n4PHEPauHYsMicunmubU4dY6rqnCS/NJz+RZJnb9LVnDm4Lk5yJIA8MckDkvxwkh9M8vqqem53v23dPebLAVNVxyf5D0kqyb/u7j9ecAhz5mA6rbuv3eD7d1fVKzMLDx6c2ZZBz07yb+b6mDMHz8nD512SfC3J3+3u35+7fnlVPT7J25L83SR/K8kTkvz2XB/zBgCmTUbK2Pz5kCQyUnbk4shI2YaMlF2SkbJT8lFgR7whbzE3zbWP30H/uwyfX9mDWjg2LDKn7jLXNqeOIVX1rUnenNki6ZuT/HB3f26T7ubMAdXd13b3nwzHZd39W939hCRPS/LNmf0q6/x1t5kvB89PJzkzyf+X5EW7uN+cOYA2CZqOXPtckidmLRR4zrou5szBM//3/I3rwqYkSXcfTvJP5756yhZjmDcAMD0yUsbmz4fISNkRGSk7JCNlYTJSFiAfBXbEgrzFXDfX3snrQI+sjt7J1g0cTIvMqZPn2ubUMaKq7p/kXUnumdmvKJ7S3ZducYs5w+10968neWNm/05/VVXdc+6y+XKAVNUZSf75cPqc7r5hq/6bMGe4g+7+RJJ3D6cPrKpvnLtszhw883/P37FZp+7+n0k+PZyetcUY5g0ATI+MlLH58+EBJyNlWTJSjpCRsldkpMyRjwI7YsvaBXT3TVX1+SSnJDl9q77DH/aP/MPx6r2ujcm6Zq695ZxKcp+5tjl1DBj+sP5fk3xjkk7yjO5+8za3mTNs5JLMtmY4ObPXX/+n4Xvz5WD5icx+SfWJJCdV1ZM36PM359p/u6pOHdpvHcIpc4bNfDTJuUP7tCSfGdrmzMFzdZIj/+y4ZquOQ9/TknzDuu/NGwCYMBkpe8CfDw8wGSkjkpGSyEjZWzJSEvkosEMW5C3uiiSPzGzl+6HuvnWTfmesuwc28tG59hmb9rrjdXNq4qrqlMx+SfPNw1fP6e7X7eBWc4aN/OVc+5vm2ubLwXLkteXfnOQ3d9D/X8y175/khpgzbK42+d6cOXj+Z9Z+0Xmnbfoeub7+v5nMGwCYPhkpY/LnwwNKRsrIZKQkMlL2loyURD4K7JAtaxf3geHz5CQP2aLfOXPtD+5dOUzcJ7P264lztuqY5FHD56eTfGqvCmLvVdU9krwzybcMX72gu//tDm83Z9jIaXPt+ddVmy8sypxhM98y1/7MXNucOXj+21z7Adv0PfI/qn163ffmDQBMn4yUMfnz4QEkI2UPyEgZiznDZmSkJPJRYIcsyFvcxXPtp2/UoaqOS/K04fTaJO/d25KYqu7uzF6jniRnVNXDN+o3fH9k9fslw31MUFWdlOTtSb5z+OoXuvuXd3q/OcMmfmiu/cdHGubLwdLd53d3bXUkedHcLd89d+1TwxjmDHdQVd+c5O8Mp5/o7tvCA3PmQHpLkq8O7Sds1qmqzklyr+H0/fPXzBsAOCZcPNeWkbIUfz48eGSk7BEZKTJS9oyMlDnyUWBHLMhbUHd/OGv/wHxmVZ29QbefTHLm0H5Fd391gz5wxIVZe03tK6vqxPmLw/krh9Nbh/5MUFUdn+TNSb5r+OoV3f2zuxjqwpgzB0JVnV9VJ2zT5yeSPG44/VTW3lJwxIUxX1jMhTFnDoyq+v6qOrTF9Xsn+e0kdx6+2uhtBRfGnDkwuvuvkvzqcPp3qurJ6/tU1d1y+7/Pr95gqAtj3gDAZMlI2QMXxp8PDwQZKYuSkbJPLow5c2DISFmEfBTYqbKIdnFV9eDMtlg4MbPXXr8ks194npjkyUmeNXS9MslDu/u6/aiTvVdVj0jywLmvTknyr4b2B7P2L+MkSXdftMk4v5jkBcPpR5L8cpKPZ/aa2+cnefBw7Re7+6fHqJ2jr6p+J2u/lHhPkucm2eofwrd095WbjGXOHABV9akkd0vyO5mFSB/P7N87d0vybUn+ftbCy1uSnNvd/3WDccwXkiRV9cIkPzecfnd3v2+TfubMATH8c+bOmf1z5kOZhdZfyezPNI9O8mNZ+xXfB5J8b3ffvME45swBUlVfn+TyJPfNLAz6lSRvSvLlzP799Pys/XLz33f3P95kHPMGACZMRsoRMlIWISNlUTJSxiYjZT0ZKYuSjwI7YUHeLlXV9yf5jSR336TLlZn9of+qo1cVR1tVXZTkH+60//Aq7I3GOS7Jf0zyjC1uf02SZ3X34UVqZHVU1aL/wP3z7r7fJmOZMwfA8B+B37SDrtckeUZ3v3uTccwXkiwUNpkzB8QC/5z5nSQXdPe1m4xjzhwwVXVmZtszPHCLbv93kh/b7G045g0ATJ+MlERGymJkpCxKRsrYZKSsJyNlN+SjwHYsyFtCVX1Tkh9Pcm6S0zP75c1VSd6Y5FXdfeM+lsdRMFbYNDfe4zL79fBZmf3q4vNJLkvy6u5+x+4rZRWMGTbNjWnOHMOq6gFJvjfJd2e2zc+9M/sV1k1JPpfkvyd5W5I37OTfOeYLOw2b5vqbM8e4qjonyTlJzk7yzZn9fb57Zr80vzrJ7yX5te7+0A7HM2cOkKo6Ocmzkzwxyd9Ictckf5HZW1Be3d3v3eE45g0ATJiMFBkpi5CRsigZKWOTkbKejJTdko8CW7EgDwAAAAAAAAAAAEZw3H4XAAAAAAAAAAAAAMcCC/IAAAAAAAAAAABgBBbkAQAAAAAAAAAAwAgsyAMAAAAAAAAAAIARWJAHAAAAAAAAAAAAI7AgDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACMwII8AAAAAAAAAAAAGIEFeQAAAAAAAAAAADACC/IAAAAAAAAAAABgBBbkAQAAAAAAAAAAwAgsyAMAAAAAAAAAAIARWJAHAAAAAAAAAAAAI7AgDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACMwII8AAAAAAAAAAAAGIEFeQAAAAAAAAAAADACC/IAAAAAAAAAAABgBBbkAQAAAAAAAAAAwAgsyAMAAAAAAAAAAIARWJAHAAAAAAAAAAAAI7AgDwAAAAAAAAAAAEZgQR4AAAAAAAAAAACMwII8AAAAAAAAAAAAGIEFeQAAAAAAAAAAADCC/x8Tfd0LLPOa2gAAAABJRU5ErkJggg==\n", "text/plain": [ "